Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights

First-principles calculations show that ZnSnN2 has a very small formation enthalpy, and the donor defects such as SnZn antisites and ON impurities have high concentration, making the material degenerately n-type, which explains the observed high electron concentration. ZnSnN2 can be regarded as a new material that combines a metal-like conductivity with an optical bandgap around 2 eV.

[1]  R. L. Field,et al.  Growth, disorder, and physical properties of ZnSnN2 , 2013 .

[2]  Kris T. Delaney,et al.  Structural and Optoelectronic Characterization of RF Sputtered ZnSnN2 , 2013, Advanced materials.

[3]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[4]  A. Walsh,et al.  Bandgap engineering of ZnSnP2 for high-efficiency solar cells , 2012 .

[5]  S. M. Durbin,et al.  ZnSnN2: A new earth-abundant element semiconductor for solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[6]  Qimin Yan,et al.  Role of nitrogen vacancies in the luminescence of Mg-doped GaN , 2012 .

[7]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[8]  M. Schilfgaarde,et al.  Quasiparticle band structure of Zn-IV-N-2 compounds , 2011 .

[9]  Walter R. L. Lambrecht,et al.  Electronic and lattice dynamical properties of II-IV-N2 semiconductors , 2011 .

[10]  A. Walsh,et al.  Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors , 2010 .

[11]  Anderson Janotti,et al.  Carbon impurities and the yellow luminescence in GaN , 2010 .

[12]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[13]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[14]  C. Körber,et al.  Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. , 2008, Physical review letters.

[15]  Challa Bekele,et al.  Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources , 2008 .

[16]  A. Kuwabara Theoretical investigation to thermal equilibrium concentration of point defect through first-principles calculation , 2007 .

[17]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[18]  J. Albrecht,et al.  Growth of II-IV-V2 chalcopyrite nitrides by molecular beam epitaxy , 2005 .

[19]  Suhuai Wei,et al.  Overcoming the doping bottleneck in semiconductors , 2004 .

[20]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[21]  E. Kroke,et al.  Novel group 14 nitrides , 2004 .

[22]  O. Madelung Semiconductors: Data Handbook , 2003 .

[23]  M. Scheffler,et al.  Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation , 2002 .

[24]  K. Ellmer,et al.  Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides , 1999 .

[25]  Jean-François Guillemoles,et al.  CU(IN, GA)SE2 SOLAR CELLS : DEVICE STABILITY BASED ON CHEMICAL FLEXIBILITY , 1999 .

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[28]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  Zhang,et al.  Non-Fermi-liquid theory of a compactified Anderson single-impurity model. , 1996, Physical review. B, Condensed matter.

[31]  B. Pamplin A systematic method of deriving new semiconducting compounds by structural analogy , 1964 .

[32]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[33]  C. Goodman The prediction of semiconducting properties in inorganic compounds , 1958 .

[34]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[35]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .