Finite elements with local projection stabilization for incompressible flow problems

In this paper we review recent developments in the analysis of finite element methods for incompressible flow problems with local projection stabilization (LPS). These methods preserve the favourable stability and approximation properties of classical residual-based stabilization (RBS) techniques but avoid the strong coupling of velocity and pressure in the stabilization terms. LPS-methods belong to the class of symmetric stabilization techniques and may be characterized as variational multiscale methods. In this work we summarize the most important a priori estimates of this class of stabilization schemes developed in the past 6 years. We consider the Stokes equations, the Oseen linearization and the Navier-Stokes equations. Furthermore, we apply it to optimal control problems with linear(ized) How problems, since the symmetry of the stabilization leads to the nice feature that the operations "discretize" and "optimize" commute.

[1]  Shengtai Li,et al.  Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement , 2004 .

[2]  Roger Temam,et al.  Incremental unknowns, multilevel methods and the numerical simulation of turbulence , 1998 .

[3]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[4]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[5]  Lin Bo Zhang,et al.  A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver , 1990 .

[6]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[7]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[8]  A. Huerta,et al.  Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .

[9]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[10]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[11]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[12]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2004 – 06 A stabilized nonconforming finite element method for incompressible flow , 2007 .

[13]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[14]  Marek Behr,et al.  The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations , 2004 .

[15]  G. Lube,et al.  Local projection stabilization for incompressible flows: equal-order vs. inf-sup stable interpolation. , 2008 .

[16]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[17]  Alfio Quarteroni,et al.  Optimal Control and Numerical Adaptivity for Advection-Diffusion Equations , 2005 .

[18]  Volker John,et al.  Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..

[19]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[20]  P. Hansbo,et al.  Edge Stabilization for the Incompressible Navier-Stokes Equations: a Continuous Interior Penalty Finite Element Method , 2004 .

[21]  K. Roberts,et al.  Thesis , 2002 .

[22]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[23]  Endre Süli,et al.  Stabilised hp-Finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form , 2001, Computing.

[24]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[25]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[26]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[27]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[28]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[29]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[30]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[31]  Thomas A. Manteuffel,et al.  First‐order system least squares for the Oseen equations , 2006, Numer. Linear Algebra Appl..

[32]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[33]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .