Molecular evolution of methanogens based on their metabolic facets

The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms. This review describes the advantages of using metabolic pathways to clarify evolutionary correlation of methanogens with archaea and prokaryotes. Metabolic trees can be used to highlight similarities in metabolic networks related to the biology of methanogens. Metabolic genes are among the most modular in the cell and their genes are expected to travel laterally, even in recent evolution. Phylogenetic analysis of protein superfamilies provides a perspective on the evolutionary history of some key metabolic modules of methanogens. Phage-related genes from distantly related organisms typically invade methanogens by horizontal gene transfer. Metabolic modules in methanogenesis are phylogenetically aligned in closely related methanogens. Reverse order reactions of methanogenesis are achieved in methylotrophic methanogens using metabolic and structural modules of key enzymes. A significant evolutionary process is thought to couple the utilization of heavy metal ions with energetic metabolism in methanogens. Over 30 of methanogens genomes have been sequenced to date, and a variety of databases are being developed that will provide for genome annotation and phylogenomic analysis of methanogens. Into the context of the evolutionary hypothesis, the integration of metabolomic and proteomic data into large-scale mathematical models holds promise for fostering rational strategies for strain improvement.

[1]  Eric F. Johnson,et al.  A New Type of Sulfite Reductase, a Novel Coenzyme F420-dependent Enzyme, from the Methanarchaeon Methanocaldococcus jannaschii* , 2005, Journal of Biological Chemistry.

[2]  R. Overbeek,et al.  The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. , 2002, Journal of molecular microbiology and biotechnology.

[3]  P. Chellapandi,et al.  Evaluation of Methanogenic Activity of Biogas Plant Slurry for Monitoring Codigestion of Ossein Factory Wastes and Cyanobacterial Biomass , 2010, Applied biochemistry and biotechnology.

[4]  Robert H. White,et al.  The genome of M. acetivorans reveals extensive metabolic and physiological diversity. , 2002, Genome research.

[5]  R. Doolittle,et al.  Determining divergence times with protein clocks. , 1999, The Biological bulletin.

[6]  Yan Boucher,et al.  Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. , 2005, Archaea.

[7]  L. Medlin,et al.  The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense "species complex" (Dinophyceae). , 2003, Molecular biology and evolution.

[8]  B. Ahring,et al.  Stress Genes and Proteins in the Archaea , 1999, Microbiology and Molecular Biology Reviews.

[9]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[10]  P. Chellapandi,et al.  Evolutionary implication of protein secondary structure among Archaea and Bacteria , 2008 .

[11]  W. Doolittle,et al.  Archaea and the Origin(s) of DNA Replication Proteins , 1997, Cell.

[12]  Stephen H. Zinder,et al.  Kinetics of Acetate Utilization by Two Thermophilic Acetotrophic Methanogens: Methanosarcina sp. Strain CALS-1 and Methanothrix sp. Strain CALS-1 , 1989, Applied and environmental microbiology.

[13]  T Gaasterland,et al.  Constructing multigenome views of whole microbial genomes. , 1998, Microbial & comparative genomics.

[14]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[15]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[16]  Y. Ishino,et al.  A Novel Biosynthetic Pathway of Archaetidyl-myo-inositol via Archaetidyl-myo-inositol Phosphate from CDP-archaeol and d-Glucose 6-Phosphate in Methanoarchaeon Methanothermobacter thermautotrophicus Cells* , 2009, The Journal of Biological Chemistry.

[17]  P. Chellapandi,et al.  A Phylogenetic Approach for Assigning Function of Hypothetical Proteins in photorhabdus luminescens Subsp. laumondii TT01 Genome , 2010 .

[18]  Jens Nielsen,et al.  The next wave in metabolome analysis. , 2005, Trends in biotechnology.

[19]  S. Blair Hedges,et al.  The origin and evolution of model organisms , 2002, Nature Reviews Genetics.

[20]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[21]  林继红,et al.  古细菌(Archaebacteria)表面糖蛋白 , 1990 .

[22]  Michael J. Stanhope,et al.  Universal trees based on large combined protein sequence data sets , 2001, Nature Genetics.

[23]  M. Donnelly,et al.  Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. , 1985, Biochemical and biophysical research communications.

[24]  C. Bell,et al.  Structure of Pfu Pop5, an archaeal RNase P protein. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Koonin,et al.  Gene Duplication with Displacement and Rearrangement: Origin of the Bacterial Replication Protein PriB from the Single-Stranded DNA-Binding Protein Ssb , 2003, Journal of Molecular Microbiology and Biotechnology.

[26]  Eviatar Nevo,et al.  Origin and evolution of circadian clock genes in prokaryotes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Delong,et al.  Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea , 2006, Nature.

[28]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Ranjani,et al.  Molecular Machinery of Crispr-CAS System-RNA Mediated Defense Pathway in Prokaryotes , 2011 .

[30]  S. Manrubia,et al.  Reconstructing evolutionary relationships from functional data: a consistent classification of organisms based on translation inhibition response. , 2005, Molecular phylogenetics and evolution.

[31]  Klaus Schulten,et al.  Evolution of metabolisms: a new method for the comparison of metabolic pathways , 1999, RECOMB.

[32]  A. Zeng,et al.  Phylogenetic comparison of metabolic capacities of organisms at genome level. , 2004, Molecular phylogenetics and evolution.

[33]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Gouy,et al.  A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. , 2002, Genome research.

[35]  E. Delong,et al.  Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane-Oxidizing Archaea , 2003, Applied and Environmental Microbiology.

[36]  Patrick Forterre,et al.  Phylogenomics of type II DNA topoisomerases , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  B. Dujon,et al.  The genomic tree as revealed from whole proteome comparisons. , 1999, Genome research.

[38]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[39]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[40]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[41]  M. Lidstrom,et al.  Highly Divergent Genes for Methanopterin-Linked C1 Transfer Reactions in Lake Washington, Assessed via Metagenomic Analysis and mRNA Detection , 2005, Applied and Environmental Microbiology.

[42]  T. Y. Kim,et al.  Phylogenetic analysis based on genome-scale metabolic pathway reaction content , 2004, Applied Microbiology and Biotechnology.

[43]  Céline Brochier,et al.  An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences , 2005, BMC Evolutionary Biology.

[44]  Ambuj K. Singh,et al.  Deriving phylogenetic trees from the similarity analysis of metabolic pathways , 2003, ISMB.

[45]  D. Downs Understanding microbial metabolism. , 2006, Annual review of microbiology.

[46]  S. Sharma,et al.  Evolutionary Implication of Outer Membrane Lipoprotein-Encoding Genes ompL1, lipL32 and lipL41 of Pathogenic Leptospira Species , 2009, Genom. Proteom. Bioinform..

[47]  Daniel Rokhsar,et al.  Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics , 2004, Science.

[48]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[49]  M. Friedrich Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. , 2005, Methods in enzymology.

[50]  Sarah A. Teichmann,et al.  An insight into domain combinations , 2001, ISMB.

[51]  M. Lidstrom,et al.  Novel Formaldehyde-Activating Enzyme inMethylobacterium extorquens AM1 Required for Growth on Methanol , 2000, Journal of bacteriology.

[52]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[53]  Linda L. Blackall,et al.  Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes , 2001, Journal of bacteriology.

[54]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[55]  S. Fitz-Gibbon,et al.  Whole genome-based phylogenetic analysis of free-living microorganisms. , 1999, Nucleic acids research.

[56]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[57]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Christen,et al.  Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. , 2010, Microbiology.

[59]  E. Koonin,et al.  Comparative genomics of archaea: how much have we learned in six years, and what's next? , 2003, Genome Biology.

[60]  B. Snel,et al.  Genomes in flux: the evolution of archaeal and proteobacterial gene content. , 2002, Genome research.

[61]  P. Chellapandi,et al.  Systems Biotechnology: an Energing Trend in Metabolic Engineering of Industrial Microorganisms , 2010 .

[62]  S Blairhedges,et al.  Precision of molecular time estimates , 2004 .

[63]  J. Lake,et al.  Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Arvind K. Bansal,et al.  An automated comparative analysis of 17 complete microbial genomes , 1999, Bioinform..

[65]  C R Woese,et al.  Methanococcus jannaschii genome: revisited. , 1996, Microbial & comparative genomics.

[66]  S. Teichmann,et al.  Domain combinations in archaeal, eubacterial and eukaryotic proteomes. , 2001, Journal of molecular biology.

[67]  J. Berger,et al.  Structure of the topoisomerase VI‐B subunit: implications for type II topoisomerase mechanism and evolution , 2003, The EMBO journal.

[68]  J. Gogarten,et al.  Evolution of Acetoclastic Methanogenesis in Methanosarcina via Horizontal Gene Transfer from Cellulolytic Clostridia , 2007, Journal of bacteriology.

[69]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[70]  U. Vothknecht,et al.  Archaea: from genomics to physiology and the origin of life. , 1999, Trends in cell biology.

[71]  K. Kuma,et al.  A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. , 2005, Archaea.

[72]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[73]  K. Schulten,et al.  Phylogenetic Analysis of Metabolic Pathways , 2001, Journal of Molecular Evolution.

[74]  Z. Masinovský,et al.  Some aspects of the early evolution of photosynthesis. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[75]  R. Thauer,et al.  Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. , 2007, Ciba Foundation symposium.

[76]  E. Koonin,et al.  Bacterial homologs of the small subunit of eukaryotic DNA primase. , 2000, Journal of Molecular Microbiology and Biotechnology.

[77]  H. Santos,et al.  Stress response by solute accumulation in archaea. , 2005, Current opinion in microbiology.

[78]  R. Thauer,et al.  The Physiological Role of the Ribulose Monophosphate Pathway in Bacteria and Archaea , 2006, Bioscience, biotechnology, and biochemistry.

[79]  Eric F. Johnson,et al.  A Novel Coenzyme F420 Dependent Sulfite Reductase and a Small Sulfite Reductase in Methanogenic Archaea , 2008 .

[80]  E. Koonin Orthologs, Paralogs, and Evolutionary Genomics 1 , 2005 .

[81]  C. Dahl,et al.  Microbial sulfur metabolism , 2008 .

[82]  P. Bork,et al.  Measuring genome evolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  P. Chellapandi,et al.  16S rDNA-Based Phylogeny of Non-Symbiotic Bacteria of Entomopathogenic Nematodes from Infected Insect Cadavers , 2011, Genom. Proteom. Bioinform..

[84]  Klaus Schulten,et al.  Evolution of Metabolisms: A New Method for the Comparison of Metabolic Pathways Using Genomics Information , 1999, J. Comput. Biol..

[85]  Peter Boyle,et al.  Origin and Evolution , 2005 .

[86]  D. Aguilar,et al.  Analysis of Phenetic Trees Based on Metabolic Capabilites Across the Three Domains of Life , 2004 .

[87]  J. Lake,et al.  Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. , 1996, International journal of systematic bacteriology.

[88]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[89]  Céline Brochier,et al.  Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox , 2004, Genome Biology.

[90]  J. Leunissen,et al.  Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. , 2000, Molecular biology and evolution.

[91]  E. Koonin,et al.  Evolutionary Genomics of Lactic Acid Bacteria , 2006, Journal of bacteriology.

[92]  C R Woese,et al.  An archaeal genomic signature. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[93]  J. William Schopf,et al.  Fossil evidence of Archaean life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[94]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[95]  M. Lidstrom,et al.  C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. , 1998, Science.

[96]  D. Raoult,et al.  Whole genome-based phylogenetic analysis of Rickettsiae. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.