SPICE-Based Multiphysics Model to Analyze the Dynamics of Ferroelectric Negative-Capacitance–Electrostatic MEMS Hybrid Actuators

We propose a Simulation Program with Integrated Circuit Emphasis (SPICE)-based multiphysics framework to model ferroelectric negative-capacitance–electrostatic microelectromechanical systems (MEMS) hybrid actuators. Our approach couples the nonlinear dynamics of both the ferroelectric capacitor and the MEMS actuator. Using this framework, we examine the dynamic response and the energy consumed during pull-in switching of the hybrid actuator. We predict a significant reduction in the dynamic pull-in and pull-out voltages and the energy consumed by the hybrid actuator compared with the standalone MEMS actuator. We also predict that the pull-in time of the hybrid actuator is, however, larger than that of the standalone actuator. Nevertheless, we show that one can tradeoff a small part of the reduction in actuation voltage to achieve identical pull-in times in the hybrid and standalone MEMS actuators while still consuming substantially lower energy in the former compared with the latter. Our analysis approach is compatible with standard circuit simulators and is, hence, suitable for analysis and evaluation of various heterogeneous systems consisting of hybrid MEMS actuators and other electronic devices.

[1]  C. Shin,et al.  Ferroelectric-Gated Nanoelectromechanical Nonvolatile Memory Cell , 2019, IEEE Transactions on Electron Devices.

[2]  C. Shin,et al.  Energy-Delay Sensitivity Analysis of a Nanoelectromechanical Relay With the Negative Capacitance of a Ferroelectric Capacitor , 2020, IEEE Journal of the Electron Devices Society.

[3]  Luis Castañer,et al.  Pull-in time–energy product of electrostatic actuators: comparison of experiments with simulation , 2000 .

[4]  Yang Li,et al.  Evaluation of Negative Capacitance Ferroelectric MOSFET for Analog Circuit Applications , 2017, IEEE Transactions on Electron Devices.

[5]  Kui Yao,et al.  Delay and Power Evaluation of Negative Capacitance Ferroelectric MOSFET Based on SPICE Model , 2017, IEEE Transactions on Electron Devices.

[6]  Dong-il Dan Cho,et al.  Why is (111) Silicon a Better Mechanical Material for MEMS , 2001 .

[7]  K. Lee Principles of Microelectromechanical Systems , 2011 .

[8]  Ndubuisi G. Orji,et al.  Virtual Metrology White Paper - INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS(IRDS) , 2018 .

[9]  C. Shin,et al.  Adjusting the Operating Voltage of an Nanoelectromechanical Relay Using Negative Capacitance , 2017, IEEE Transactions on Electron Devices.

[10]  R Plana,et al.  Nanoscale characterization of different stiction mechanisms in electrostatically driven MEMS devices based on adhesion and friction measurements. , 2011, Journal of colloid and interface science.

[11]  Manuel Domínguez,et al.  Dielectric charging control for electrostatic MEMS switches , 2010, Defense + Commercial Sensing.

[12]  Kristin Decker,et al.  The Spice Book , 2016 .

[13]  S. Senturia Microsystem Design , 2000 .

[14]  S. Slesazeck,et al.  A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device , 2017, 1709.06983.

[15]  G. Barbastathis,et al.  Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators , 2005, Journal of Microelectromechanical Systems.

[16]  David Macii,et al.  A measurement procedure of technology-related model parameters for enhanced RF-MEMS design , 2009, 2009 IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement.

[17]  R. Voicu,et al.  Analysis of the surface effects on adhesion in MEMS structures , 2015 .

[18]  Capacitance matching effects in negative capacitnace field effect transistor , 2016, 2016 IEEE Silicon Nanoelectronics Workshop (SNW).

[19]  C. Shin,et al.  Impact of negative capacitance on the energy-delay property of an electromechanical relay , 2019, Japanese Journal of Applied Physics.

[20]  C. Hu,et al.  Proposal for Capacitance Matching in Negative Capacitance Field-Effect Transistors , 2019, IEEE Electron Device Letters.

[21]  K. Masu,et al.  A multi-physics simulation technique for integrated MEMS , 2012, 2012 International Electron Devices Meeting.

[22]  Mohamad Sawan,et al.  System integration of high voltage electrostatic MEMS actuators , 2005, The 3rd International IEEE-NEWCAS Conference, 2005..

[23]  Gabriel M. Rebeiz,et al.  RF MEMS switches and switch circuits , 2001 .

[24]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[25]  Pascal Nouet,et al.  Design of a Smart CMOS High-Voltage driver for electrostatic MEMS switches , 2010, 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP).

[26]  Jane Edgington,et al.  Sub-50 mV NEM relay operation enabled by self-assembled molecular coating , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[27]  Adrian M. Ionescu,et al.  Negative capacitance field effect transistors; capacitance matching and non-hysteretic operation , 2017, 2017 47th European Solid-State Device Research Conference (ESSDERC).

[28]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[29]  Jun‐Bo Yoon,et al.  A sub-1-volt nanoelectromechanical switching device. , 2013, Nature nanotechnology.

[30]  David Stoppa,et al.  A versatile photodiode SPICE model for optical microsystem simulation , 2000 .

[31]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[32]  S. Datta,et al.  Physics-Based Circuit-Compatible SPICE Model for Ferroelectric Transistors , 2016, IEEE Electron Device Letters.

[33]  G. Barbastathis,et al.  Dynamic Pull-In and Switching for Sub-Pull-In Voltage Electrostatic Actuation , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[34]  M. Alam,et al.  Effective nanometer airgap of NEMS devices using negative capacitance of ferroelectric materials. , 2014, Nano letters.

[35]  Jun‐Bo Yoon,et al.  Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap , 2008 .

[36]  V. Leus,et al.  On the Dynamic Response of Electrostatic MEMS Switches , 2008, Journal of Microelectromechanical Systems.

[37]  T. Liu,et al.  Nano-Electro-Mechanical Nonvolatile Memory (NEMory) Cell Design and Scaling , 2008, IEEE Transactions on Electron Devices.

[38]  J.A. Ortega,et al.  SPICE model of thermoelectric elements including thermal effects , 2000, Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat. No. 00CH37066].

[39]  Jacques Haiech,et al.  Modeling and simulation of biological systems using SPICE language , 2017, PloS one.

[40]  James C. M. Hwang,et al.  Dielectric Charging of RF MEMS Capacitive Switches under Bipolar Control-Voltage Waveforms , 2007, IMS 2007.

[41]  M. Younis MEMS Linear and Nonlinear Statics and Dynamics , 2011 .

[42]  K. J. Vinoy,et al.  Switching and Release Time Analysis of Electrostatically Actuated Capacitive RF MEMS Switches , 2011 .

[43]  James A. Brandt High voltage bias waveform generator for an RF MEMS microswitch , 2008 .

[44]  E. Cretu,et al.  Pull-in dynamics: analysis and modeling of the transitional regime , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[45]  Jacopo Iannacci,et al.  RF MEMS technology for next-generation wireless communications , 2013 .

[46]  S. Senturia,et al.  Speed-energy optimization of electrostatic actuators based on pull-in , 1999 .

[47]  F. Shimokawa,et al.  Micro fluidic circuit design with “spice” simulation , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[48]  K. J. Vinoy,et al.  Switching and release dynamics of an electrostatically actuated MEMS switch under the influence of squeeze-film damping , 2012 .

[49]  Manabu Ataka,et al.  Microelectromechanical XNOR and XOR logic devices , 2013, IEICE Electron. Express.

[50]  David J. Monk,et al.  MEMS cantilever beam electrostatic pull-in model , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[51]  Jason V. Clark Calibrating Force and Displacement in the Face of Property Variation , 2011 .

[52]  Hiroshi Toshiyoshi A Spice-based multi-physics simulation technique for integrated MEMS , 2011, 2011 International Conference on Simulation of Semiconductor Processes and Devices.