Nonlinearly Preconditioned Optimization on Grassmann Manifolds for Computing Approximate Tucker Tensor Decompositions
暂无分享,去创建一个
[1] Sabine Van Huffel,et al. Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..
[2] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[3] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[4] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[5] Reinhold Schneider,et al. An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .
[6] Hans De Sterck,et al. A nonlinearly preconditioned conjugate gradient algorithm for rank‐R canonical tensor approximation , 2014, Numer. Linear Algebra Appl..
[7] Tamara G. Kolda,et al. Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[8] Chris H. Q. Ding,et al. Robust Tucker Tensor Decomposition for Effective Image Representation , 2013, 2013 IEEE International Conference on Computer Vision.
[9] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[10] Mariya Ishteva. Numerical Methods for the Best Low Multilinear Rank Approximation of Higher-Order Tensors (Numerieke methoden voor de beste lage multilineaire rang benadering van hogere-orde tensoren) , 2009 .
[11] Cornelis W. Oosterlee,et al. KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .
[12] Shuzhong Zhang,et al. On optimal low rank Tucker approximation for tensors: the case for an adjustable core size , 2015, J. Glob. Optim..
[13] Wolfgang Hackbusch,et al. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..
[14] Matthew G. Knepley,et al. Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..
[15] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[16] Bamdev Mishra,et al. Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..
[17] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[18] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..
[19] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[20] Nicolas Boumal,et al. Riemannian Trust Regions with Finite-Difference Hessian Approximations are Globally Convergent , 2015, GSI.
[21] Rasmus Bro,et al. MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .
[22] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[23] Sabine Van Huffel,et al. Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors , 2008, Numerical Algorithms.
[24] L. Lathauwer,et al. On the best low multilinear rank approximation of higher-order tensors , 2010 .
[25] Andy Harter,et al. Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.
[26] K. Meerbergen,et al. On the truncated multilinear singular value decomposition , 2011 .
[27] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[28] Christina Freytag. Geometry Of Pdes And Mechanics , 2016 .
[29] Hans De Sterck. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (2012) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1837 Steepest descent preconditioning for nonlinear , 2022 .
[30] J. Daniel,et al. A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions , 1974 .
[31] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[32] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[33] Tamara G. Kolda,et al. Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization , 2010 .
[34] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[35] Hans De Sterck,et al. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition , 2011, SIAM J. Sci. Comput..
[36] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[37] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[38] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[39] Gene H. Golub,et al. Numerical solution of nonlinear elliptic partial differential equations by a generalized conjugate gradient method , 1976, Computing.
[40] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[41] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[42] David J. Thuente,et al. Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.
[43] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[44] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[45] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[46] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[47] Hans D. Mittelmann,et al. On the efficient solution of nonlinear finite element equations I , 1980 .
[48] Yousef Saad,et al. Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..
[49] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[50] N. T. Son. A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds , 2013 .
[51] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[52] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..