A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, are rapidly being applied, adapted, and developed for high energy physics. Given the fast pace of this research, we have created a living review with the goal of providing a nearly comprehensive list of citations for those developing and applying these approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as possible. Suggestions and contributions are most welcome, and we provide instructions for participating.

[1]  L. Hollenberg,et al.  Quantum Support Vector Machines for Continuum Suppression in B Meson Decays , 2021, Computing and Software for Big Science.

[2]  F. Bishara,et al.  Machine learning amplitudes for faster event generation , 2019, Physical Review D.

[3]  Jin Min Yang,et al.  Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC , 2019, Physics Letters B.

[4]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[5]  Mike Williams,et al.  uBoost: a boosting method for producing uniform selection efficiencies from multivariate classifiers , 2013, 1305.7248.

[6]  Sung Hak Lim,et al.  Morphology for jet classification , 2020, Physical Review D.

[7]  Benjamin Nachman,et al.  Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. , 2017, Physical review letters.

[8]  Andy Buckley,et al.  Xsec: the cross-section evaluation code , 2020, The European Physical Journal C.

[9]  A. Redelbach,et al.  An equation-of-state-meter for CBM using PointNet , 2021, Journal of High Energy Physics.

[10]  Salvatore Rappoccio,et al.  Explainable AI for ML jet taggers using expert variables and layerwise relevance propagation , 2020, Journal of High Energy Physics.

[11]  Tom Heskes,et al.  Constraining the parameters of high-dimensional models with active learning , 2019, The European Physical Journal C.

[12]  Andrew Edmonds,et al.  Using machine learning to select high-quality measurements , 2021, ArXiv.

[13]  Y. Verma,et al.  Shower Identification in Calorimeter using Deep Learning , 2021, 2103.16247.

[14]  Meng Zhou,et al.  Application of radial basis functions neutral networks in spectral functions , 2021, Physical Review D.

[15]  F. T. Collaboration,et al.  Parton Distribution Functions , 2016 .

[16]  S. Nagu,et al.  Constraining nuclear effects in Argon using machine learning algorithms , 2021, 2105.12733.

[17]  Stefano Carrazza,et al.  VegasFlow: Accelerating Monte Carlo simulation across multiple hardware platforms , 2020, Comput. Phys. Commun..

[18]  Cheng Chen,et al.  Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning , 2020, ArXiv.

[19]  J. Pumplin,et al.  How to tell quark jets from gluon jets. , 1991, Physical review. D, Particles and fields.

[20]  S. Tripathy,et al.  Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC energies using machine learning , 2021, Physical Review D.

[21]  C. Cowden,et al.  On the use of neural networks for energy reconstruction in high-granularity calorimeters , 2021, Journal of Instrumentation.

[22]  D. Whiteson,et al.  Deep Learning and Its Application to LHC Physics , 2018, Annual Review of Nuclear and Particle Science.

[23]  Luke de Oliveira Tips and Tricks for Training GANs with Physics Constraints , 2017 .

[24]  A. Butter,et al.  Generative Networks for LHC Events , 2020, Artificial Intelligence for High Energy Physics.

[25]  Tilman Plehn,et al.  How to GAN LHC events , 2019, SciPost Physics.

[27]  Pile-Up Mitigation using Attention , 2021, 2107.02779.

[28]  S. Brown,et al.  Machine learning representation of the F2 structure function over all charted Q2 and x range , 2021, Physical Review C.

[29]  Michael Kagan,et al.  Image-Based Jet Analysis , 2020, Artificial Intelligence for High Energy Physics.

[30]  L. Gouskos,et al.  The Machine Learning landscape of top taggers , 2019, SciPost Physics.

[31]  Jan M. Pawlowski,et al.  Reducing autocorrelation times in lattice simulations with generative adversarial networks , 2018, Mach. Learn. Sci. Technol..

[32]  Ibrahim A. Hameed,et al.  Using Convolutional Neural Networks for the Helicity Classification of Magnetic Fields , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[33]  Top squark signal significance enhancement by different Machine Learning Algorithms , 2021, 2106.06813.

[34]  Bruce Mellado,et al.  The use of Generative Adversarial Networks to characterise new physics in multi-lepton final states at the LHC , 2021, ArXiv.

[35]  Tree boosting for learning EFT parameters , 2021, 2107.10859.

[36]  L. Dery,et al.  Weakly supervised classification in high energy physics , 2017, Journal of High Energy Physics.

[37]  M. Mahmoud,et al.  Modeling of charged-particle multiplicity and transverse-momentum distributions in pp collisions using a DNN , 2021, Scientific Reports.

[38]  G. Kasieczka,et al.  Deep-learning top taggers or the end of QCD? , 2017, 1701.08784.

[39]  Maurizio Pierini,et al.  Adversarially Learned Anomaly Detection on CMS open data: re-discovering the top quark , 2020, The European Physical Journal Plus.

[40]  J. de Seixas,et al.  Sparse deconvolution methods for online energy estimation in calorimeters operating in high luminosity conditions , 2021, Journal of Instrumentation.

[41]  Philip Harris,et al.  Machine learning uncertainties with adversarial neural networks , 2018, The European Physical Journal C.

[42]  Toru Sato,et al.  Model independent analysis of coupled-channel scattering: A deep learning approach , 2021, Physical Review D.

[43]  Martin Erdmann,et al.  Generating and Refining Particle Detector Simulations Using the Wasserstein Distance in Adversarial Networks , 2018, Computing and Software for Big Science.

[44]  MicroBooNE collaboration C. Adams,et al.  Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber , 2018, Physical Review D.

[45]  P. Harris,et al.  Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure , 2016, 1603.00027.

[46]  X. Ruan,et al.  Machine learning approach for the search of resonances with topological features at the Large Hadron Collider , 2020, International Journal of Modern Physics A.

[47]  O. Amram,et al.  Tag N’ Train: a technique to train improved classifiers on unlabeled data , 2020, Journal of High Energy Physics.

[48]  S. M. Etesami,et al.  A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution , 2019, Computing and Software for Big Science.

[49]  Eric A. Moreno,et al.  JEDI-net: a jet identification algorithm based on interaction networks , 2019, The European Physical Journal C.

[50]  P. Baldi,et al.  Jet flavor classification in high-energy physics with deep neural networks , 2016, 1607.08633.

[51]  Atlas Collaboration Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance using 13 TeV $pp$ collision data from the ATLAS detector , 2020, 2004.01678.

[52]  R. K. Neely,et al.  Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber , 2020, Physical Review D.

[53]  B. Nachman,et al.  Extending the search for new resonances with machine learning , 2019, Physical Review D.

[54]  Fedor Ratnikov,et al.  Generative Models for Fast Calorimeter Simulation.LHCb case , 2018, ArXiv.

[55]  Tommaso Dorigo,et al.  Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review , 2020, ArXiv.

[56]  Kyle Cranmer,et al.  Hierarchical clustering in particle physics through reinforcement learning , 2020, ArXiv.

[57]  Ulrich Heintz,et al.  End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data , 2021, Physical Review D.

[58]  Gilles Louppe,et al.  Approximating Likelihood Ratios with Calibrated Discriminative Classifiers , 2015, 1506.02169.

[59]  Jin Min Yang,et al.  Detecting an axion-like particle with machine learning at the LHC , 2021, Journal of High Energy Physics.

[60]  Andrey Ustyuzhanin,et al.  Segmentation of EM showers for neutrino experiments with deep graph neural networks , 2021, Journal of Instrumentation.

[61]  Cheongjae Jang,et al.  Learning to increase matching efficiency in identifying additional b-jets in the tt̅b̅ process , 2021, ArXiv.

[62]  T. Tanimori,et al.  Development of convolutional neural networks for an electron-tracking Compton camera , 2021, Progress of Theoretical and Experimental Physics.

[63]  C. Collaboration,et al.  Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques , 2020, 2004.08262.

[64]  Anders Andreassen,et al.  binary junipr: An Interpretable Probabilistic Model for Discrimination. , 2019, Physical review letters.

[65]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2020, Proceedings of the National Academy of Sciences.

[66]  B. Nachman,et al.  Classification without labels: learning from mixed samples in high energy physics , 2017, Journal of High Energy Physics.

[67]  B. Nachman A guide for deploying Deep Learning in LHC searches: How to achieve optimality and account for uncertainty , 2019, SciPost Physics.

[68]  Andreas Ipp,et al.  Lattice gauge equivariant convolutional neural networks , 2020, Physical review letters.

[69]  Miron Livny,et al.  Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits , 2020, Journal of Physics G: Nuclear and Particle Physics.

[70]  Savannah Thais,et al.  Instance Segmentation GNNs for One-Shot Conformal Tracking at the LHC , 2021, ArXiv.

[71]  Song Han,et al.  Fast inference of deep neural networks in FPGAs for particle physics , 2018, Journal of Instrumentation.

[72]  Mauro Verzetti,et al.  DeepJet : Generic physics object based jet multiclass classification for LHC experiments , 2017 .

[73]  P. Ambrozewicz,et al.  AI-based Monte Carlo event generator for electron-proton scattering , 2020 .

[74]  M. Sokoloff,et al.  Progress in developing a hybrid deep learning algorithm for identifying and locating primary vertices , 2021, EPJ Web of Conferences.

[75]  B. Nachman Anomaly Detection for Physics Analysis and Less Than Supervised Learning , 2020, Artificial Intelligence for High Energy Physics.

[76]  M. Freytsis,et al.  (Machine) learning to do more with less , 2017, Journal of High Energy Physics.

[77]  W. Brooks,et al.  AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case , 2019, Journal of Instrumentation.

[78]  Myeonghun Park,et al.  Deep-Learned Event Variables for Collider Phenomenology , 2021, Physical Review D.

[79]  Prabhat,et al.  Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors , 2020, 2003.11603.

[80]  David Shih,et al.  Simulation assisted likelihood-free anomaly detection , 2020 .

[81]  Leandro Giordano Almeida,et al.  Playing tag with ANN: boosted top identification with pattern recognition , 2015, 1501.05968.

[82]  Daniel O'Hanlon,et al.  Studying the Potential of Graphcore® IPUs for Applications in Particle Physics , 2020, Comput. Softw. Big Sci..

[83]  Corey Adams,et al.  PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics , 2020, ArXiv.

[84]  David Shih,et al.  CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows , 2021, ArXiv.

[85]  Michelle Kuchera,et al.  Bayesian Neural Networks for Fast SUSY Predictions , 2020 .

[86]  Sofia Vallecorsa,et al.  Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations , 2021, EPJ Web of Conferences.

[87]  B. Nachman,et al.  Identifying the Quantum Properties of Hadronic Resonances using Machine Learning , 2021, 2105.04582.

[88]  David Shih,et al.  New Methods and Datasets for Group Anomaly Detection From Fundamental Physics , 2021, ArXiv.

[89]  Benjamin Carlson,et al.  Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics , 2021, ArXiv.

[90]  B. Clerbaux,et al.  Study of Using Machine Learning for Level 1 Trigger Decision in JUNO Experiment , 2020, IEEE Transactions on Nuclear Science.

[91]  Patrick T. Komiske,et al.  Pileup Mitigation with Machine Learning (PUMML) , 2017, Journal of High Energy Physics.

[92]  Sascha Diefenbacher,et al.  Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed , 2020 .

[93]  Prabhat,et al.  Novel deep learning methods for track reconstruction , 2018, 1810.06111.

[94]  Stefano Carrazza,et al.  Jet Grooming through Reinforcement Learning , 2019, Journal of Physics: Conference Series.

[95]  Vladimir Gligorov,et al.  New approaches for boosting to uniformity , 2014, 1410.4140.

[96]  Astronomy,et al.  Convolutional neural networks for direct detection of dark matter , 2019, 1911.09210.

[97]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[98]  Benjamin Nachman,et al.  Latent Space Refinement for Deep Generative Models , 2021, ArXiv.

[99]  K. Cranmer,et al.  MadMiner: Machine Learning-Based Inference for Particle Physics , 2019, Computing and Software for Big Science.

[100]  P. Baldi,et al.  Learning to isolate muons , 2021, Journal of High Energy Physics.

[101]  Daniel Alvestad,et al.  Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino Detectability Using Machine Learning , 2021, 2108.03125.

[102]  S. Balasubramanian,et al.  Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE , 2020, Physical Review D.

[103]  Michael Spannowsky,et al.  Elvet - a neural network-based differential equation and variational problem solver , 2021, ArXiv.

[104]  Gianluca Cerminara,et al.  Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics , 2020, Frontiers in Big Data.

[105]  G. Zech,et al.  Binning-Free Unfolding Based on Monte Carlo Migration , 2003 .

[106]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[107]  Prabhat,et al.  Track Seeding and Labelling with Embedded-space Graph Neural Networks , 2020, ArXiv.

[109]  G. Kasieczka,et al.  Per-object systematics using deep-learned calibration , 2020, SciPost Physics.

[110]  Muhammad Abbas,et al.  Extracting Signals of Higgs Boson From Background Noise Using Deep Neural Networks , 2020, ArXiv.

[111]  Thong Q. Nguyen,et al.  Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider , 2021, Nat. Mach. Intell..

[112]  Gurtej Kanwar,et al.  Flow-based sampling for multimodal distributions in lattice field theory , 2021, ArXiv.

[113]  G. Menardi,et al.  Nonparametric semi-supervised classification with application to signal detection in high energy physics , 2021, Statistical Methods & Applications.

[114]  Maria Spiropulu,et al.  Topology Classification with Deep Learning to Improve Real-Time Event Selection at the LHC , 2018, Computing and Software for Big Science.

[115]  D. Maître,et al.  A factorisation-aware matrix element emulator , 2021, Journal of High Energy Physics.

[116]  Philip Harris,et al.  Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml , 2020, Mach. Learn. Sci. Technol..

[117]  S. Gleyzer,et al.  Decoding Dark Matter Substructure without Supervision , 2020, 2008.12731.

[118]  B. Nachman,et al.  Neural networks for full phase-space reweighting and parameter tuning , 2019, Physical Review D.

[119]  Nicolo Cartiglia,et al.  First application of machine learning algorithms to the position reconstruction in Resistive Silicon Detectors , 2020, 2011.02410.

[120]  E. Metodiev,et al.  Jet Topics: Disentangling Quarks and Gluons at Colliders. , 2018, Physical review letters.

[121]  D. Bourilkov Machine and deep learning applications in particle physics , 2019, International Journal of Modern Physics A.

[122]  Vinicius Mikuni,et al.  ABCNet: an attention-based method for particle tagging , 2020, European physical journal plus.

[123]  A. Larkoski,et al.  Novel jet observables from machine learning , 2017, 1710.01305.

[124]  Sascha Diefenbacher,et al.  DCTRGAN: improving the precision of generative models with reweighting , 2020, Journal of Instrumentation.

[125]  Anibal D. Medina,et al.  Towards a method to anticipate dark matter signals with deep learning at the LHC , 2021, SciPost Physics.

[126]  P. G. Isar,et al.  Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory , 2021, Journal of Instrumentation.

[127]  Uros Seljak,et al.  Unsupervised in-distribution anomaly detection of new physics through conditional density estimation , 2020, ArXiv.

[128]  Javier Duarte,et al.  Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs , 2020, ArXiv.

[129]  J. Asorey,et al.  Probing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks , 2021, Journal of Cosmology and Astroparticle Physics.

[130]  Francesco Pandolfi,et al.  Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks , 2018, Computing and Software for Big Science.

[131]  Hoang Dai Nghia Nguyen,et al.  Dijet Resonance Search with Weak Supervision Using sqrt[s]=13  TeV pp Collisions in the ATLAS Detector. , 2020, Physical review letters.

[132]  G. Kasieczka,et al.  Unsupervised hadronic SUEP at the LHC , 2021, Journal of High Energy Physics.

[133]  Ward Haddadin,et al.  Invariant polynomials and machine learning , 2021, ArXiv.

[134]  B. Nachman,et al.  Neural resampler for Monte Carlo reweighting with preserved uncertainties , 2020, Physical Review D.

[135]  C. Bromberg,et al.  A deep-learning based raw waveform region-of-interest finder for the liquid argon time projection chamber , 2021, Journal of Instrumentation.

[136]  C. Tunnell,et al.  A review on machine learning for neutrino experiments , 2020, 2008.01242.

[137]  Simon Badger,et al.  Optimising simulations for diphoton production at hadron colliders using amplitude neural networks , 2021, Journal of High Energy Physics.

[138]  D. Whiteson,et al.  Resonance Searches with Machine Learned Likelihood Ratios , 2020, 2002.04699.

[139]  Michael Spannowsky,et al.  Quantum-inspired event reconstruction with Tensor Networks: Matrix Product States , 2021, Journal of High Energy Physics.

[140]  Novel null tests for the spatial curvature and homogeneity of the Universe and their machine learning reconstructions , 2021, 2103.06789.

[141]  Dimitrios Gunopulos,et al.  Particle Cloud Generation with Message Passing Generative Adversarial Networks , 2021, ArXiv.

[142]  Sascha Diefenbacher,et al.  CapsNets continuing the convolutional quest , 2019, SciPost Physics.

[143]  K. Cranmer,et al.  Simulation-Based Inference Methods for Particle Physics , 2020, Artificial Intelligence for High Energy Physics.

[144]  Deepak Kar,et al.  Unfolding with Generative Adversarial Networks , 2018, 1806.00433.

[145]  Tilo Wettig,et al.  Machine learning for surface prediction in ACTS , 2021, EPJ Web of Conferences.

[146]  Jin Min Yang,et al.  Probing stop pair production at the LHC with graph neural networks , 2018, Journal of High Energy Physics.

[147]  Yu Lou,et al.  FPGAs-as-a-Service Toolkit (FaaST) , 2020, 2020 IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC).

[148]  Simon Badger,et al.  Using neural networks for efficient evaluation of high multiplicity scattering amplitudes , 2020 .

[149]  Nikolai Gagunashvili,et al.  Machine learning approach to inverse problem and unfolding procedure , 2010, 1004.2006.

[150]  Martin Erdmann,et al.  Shared Data and Algorithms for Deep Learning in Fundamental Physics , 2021, ArXiv.

[151]  Hajime Nagahara,et al.  Development of a Vertex Finding Algorithm using Recurrent Neural Network , 2021, ArXiv.

[152]  J. Erdmann,et al.  A tagger for strange jets based on tracking information using long short-term memory , 2019, Journal of Instrumentation.

[153]  Gurtej Kanwar,et al.  Equivariant flow-based sampling for lattice gauge theory , 2020, Physical review letters.

[154]  Daniel A. Lidar,et al.  Solving a Higgs optimization problem with quantum annealing for machine learning , 2017, Nature.

[155]  Ian Watson,et al.  Quark Gluon Jet Discrimination with Weakly Supervised Learning , 2019, Journal of the Korean Physical Society.

[156]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[157]  Jernej F. Kamenik,et al.  Uncovering latent jet substructure , 2019, Physical Review D.

[158]  L. Xia QBDT, a new boosting decision tree method with systematical uncertainties into training for High Energy Physics , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[159]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[160]  Felix Kahlhoefer,et al.  Constraining dark matter annihilation with cosmic ray antiprotons using neural networks , 2021, Journal of Cosmology and Astroparticle Physics.

[161]  J. A. Aguilar-Saavedra,et al.  A generic anti-QCD jet tagger , 2017, 1709.01087.

[162]  B. Nachman,et al.  Automating the construction of jet observables with machine learning , 2019, Physical Review D.

[163]  Gregor Kasieczka,et al.  Quark-gluon tagging: Machine learning vs detector , 2018, SciPost Physics.

[164]  Jonathan Shlomi,et al.  Graph neural networks in particle physics , 2020, Mach. Learn. Sci. Technol..

[165]  J. A. Aguilar-Saavedra,et al.  Mass Unspecific Supervised Tagging (MUST) for boosted jets , 2020, Journal of High Energy Physics.

[166]  W. Bhimji,et al.  Next Generation Generative Neural Networks for HEP , 2019, EPJ Web of Conferences.

[167]  Patrick T. Komiske,et al.  Learning to classify from impure samples with high-dimensional data , 2018, Physical Review D.

[168]  Maurizio Pierini,et al.  Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description , 2019, Journal of Physics: Conference Series.

[169]  Jinmian Li,et al.  Reconstructing boosted Higgs jets from event image segmentation , 2020, Journal of High Energy Physics.

[170]  Michela Paganini,et al.  Electromagnetic showers beyond shower shapes , 2018, 1806.05667.

[171]  C. Fitzpatrick,et al.  Using holistic event information in the trigger , 2018, 1808.00711.

[172]  Sven Krippendorf,et al.  GANs for generating EFT models , 2018, Physics Letters B.

[173]  Christina Gao,et al.  Event generation with normalizing flows , 2020 .

[174]  A. Simone,et al.  Guiding new physics searches with unsupervised learning , 2018, The European Physical Journal C.

[175]  Stefano Carrazza,et al.  MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning , 2020, Comput. Phys. Commun..

[176]  Rafael Lima Sequence-based Machine Learning Models in Jet Physics , 2021, ArXiv.

[177]  M. Spannowsky,et al.  Adversarially-trained autoencoders for robust unsupervised new physics searches , 2019, Journal of High Energy Physics.

[178]  M. Kadastik,et al.  Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics , 2020, The European Physical Journal C.

[179]  Christophe Delaere,et al.  Advanced Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider , 2021, ArXiv.

[180]  C. Herold,et al.  Unsupervised outlier detection in heavy-ion collisions , 2020, Physica Scripta.

[182]  S. Nesseris,et al.  Machine learning improved fits of the sound horizon at the baryon drag epoch , 2021, Physical Review D.

[183]  S. Ardid,et al.  Deep learning reconstruction in ANTARES , 2021, Journal of Instrumentation.

[184]  Vinicius Mikuni,et al.  Point cloud transformers applied to collider physics , 2021, Mach. Learn. Sci. Technol..

[185]  Michela Paganini,et al.  CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks , 2017, ArXiv.

[186]  Alexander Vandenberg-Rodes,et al.  Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes , 2017, 1709.05681.

[187]  T. Trzciński,et al.  Generative Models for Fast Cluster Simulations in the TPC for the ALICE Experiment , 2018, Advances in Intelligent Systems and Computing.

[188]  R. D’Agnolo,et al.  Learning new physics from a machine , 2018, Physical Review D.

[189]  Deep Learning Searches for Vector-Like Leptons at the LHC and Electron/Muon Colliders , 2021, 2108.03926.

[190]  B. S. González,et al.  Tackling the muon identification in water Cherenkov detectors problem for the future Southern Wide-field Gamma-ray Observatory by means of machine learning , 2021, Neural Computing and Applications.

[191]  J. A. Aguilar-Saavedra Pulling the Higgs and top needles from the jet stack with feature extended supervised tagging , 2021, The European Physical Journal C.

[192]  Marko Jercic,et al.  Exploring the Possibility of a Recovery of Physics Process Properties from a Neural Network Model , 2020, Entropy.

[193]  M. Spannowsky,et al.  Unsupervised event classification with graphs on classical and photonic quantum computers , 2021, Journal of High Energy Physics.

[194]  E. P. Takeva,et al.  Search for non-resonant Higgs boson pair production in the bbℓνℓν final state with the ATLAS detector in pp collisions at √s =13 TeV , 2020 .

[195]  Barnabás Póczos,et al.  End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC , 2018, ArXiv.

[196]  M. Pierini,et al.  The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider , 2021, SciPost Physics.

[197]  Max Welling,et al.  Accelerating the BSM interpretation of LHC data with machine learning , 2016, Physics of the Dark Universe.

[198]  Tilman Plehn,et al.  How to GAN event subtraction , 2019 .

[199]  Benjamin Nachman,et al.  Machine learning templates for QCD factorization in the search for physics beyond the standard model , 2019, Journal of High Energy Physics.

[200]  Wenjie Wu,et al.  Deep-Learning-Based Kinematic Reconstruction for DUNE , 2020, ArXiv.

[201]  Matthew D. Klimek,et al.  Improved neural network Monte Carlo simulation , 2020, 2009.07819.

[202]  Chase Shimmin,et al.  Particle Convolution for High Energy Physics , 2021, ArXiv.

[203]  Simone Marzani,et al.  Towards machine learning analytics for jet substructure , 2020 .

[204]  Philip Harris,et al.  GPU coprocessors as a service for deep learning inference in high energy physics , 2021, Mach. Learn. Sci. Technol..

[205]  Jake Grigsby,et al.  Deep learning analysis of deeply virtual exclusive photoproduction , 2020, Physical Review D.

[206]  Gilles Louppe,et al.  Likelihood-free inference with an improved cross-entropy estimator , 2018, ArXiv.

[207]  Martin Erdmann,et al.  Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network , 2018, Computing and Software for Big Science.

[208]  Jin Min Yang,et al.  Probing the triple Higgs boson coupling with machine learning at the LHC , 2020, Physical Review D.

[209]  David Rousseau,et al.  Further developments of FORM , 2018, Journal of Physics: Conference Series.

[210]  C. Fanelli,et al.  DeepRICH: learning deeply Cherenkov detectors , 2019, Mach. Learn. Sci. Technol..

[211]  Jennifer Thompson,et al.  Deep-learning jets with uncertainties and more , 2019, SciPost Physics.

[212]  Gregor Kasieczka,et al.  Deep-learned Top Tagging with a Lorentz Layer , 2017, SciPost Physics.

[213]  M. Buckley,et al.  Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning , 2021, 2104.12789.

[214]  G. Zech,et al.  Unfolding by weighting Monte Carlo events , 1995 .

[215]  Maria Spiropulu,et al.  Variational autoencoders for new physics mining at the Large Hadron Collider , 2018, Journal of High Energy Physics.

[216]  Inkyu Park,et al.  Quark-Gluon Jet Discrimination Using Convolutional Neural Networks , 2019, Journal of the Korean Physical Society.

[217]  Nan Su,et al.  An EoS-meter of QCD transition from deep learning , 2016, ArXiv.

[218]  R. K. Elayavalli,et al.  Probing heavy ion collisions using quark and gluon jet substructure , 2018, Proceedings of International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions — PoS(HardProbes2018).

[219]  Bruce Denby,et al.  Neural networks and cellular automata in experimental high energy physics , 1988 .

[220]  G. Kasieczka,et al.  DisCo Fever: Robust Networks Through Distance Correlation , 2020, 2001.05310.

[221]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[222]  D. Whiteson,et al.  Efficient sampling of constrained high-dimensional theoretical spaces with machine learning , 2021, The European Physical Journal C.

[223]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[225]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[226]  M. Wurm,et al.  CNNs for enhanced background discrimination in DSNB searches in large-scale water-Gd detectors , 2021, Journal of Cosmology and Astroparticle Physics.

[227]  K. Orginos,et al.  Neural-network analysis of Parton Distribution Functions from Ioffe-time pseudodistributions , 2020, Journal of High Energy Physics.

[228]  H. Stöcker,et al.  An equation-of-state-meter of quantum chromodynamics transition from deep learning , 2018, Nature Communications.

[229]  Maria Spiropulu,et al.  Physics and Computing Performance of the Exa.TrkX TrackML Pipeline , 2021, ArXiv.

[230]  S. Nandi,et al.  'Deep' Dive into $b \to c$ Anomalies: Standardized and Future-proof Model Selection Using Self-normalizing Neural Networks , 2020, 2008.04316.

[231]  Arsenii Gavrikov,et al.  The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment , 2021, EPJ Web of Conferences.

[232]  G. Cottin,et al.  Boosted W and Z tagging with jet charge and deep learning , 2019, Physical Review D.

[233]  E. Dawe,et al.  Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks , 2016, 1609.00607.

[234]  Vikram A. Saletore,et al.  Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case , 2021, ICPRAM.

[235]  Francois Drielsma,et al.  Scalable, End-to-End, Deep-Learning-Based Data Reconstruction Chain for Particle Imaging Detectors , 2021, ArXiv.

[236]  B. Nachman,et al.  Disentangling boosted Higgs Boson production modes with machine learning , 2020, Journal of Instrumentation.

[237]  Gilles Louppe,et al.  Mining for Dark Matter Substructure: Inferring Subhalo Population Properties from Strong Lenses with Machine Learning , 2019, The Astrophysical Journal.

[238]  Stefano Carrazza,et al.  Lund jet images from generative and cycle-consistent adversarial networks , 2019, ArXiv.

[239]  Y. Lai,et al.  Explainable machine learning of the underlying physics of high-energy particle collisions , 2020, Physics Letters B.

[240]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[241]  Patrick T. Komiske,et al.  Deep learning in color: towards automated quark/gluon jet discrimination , 2016, Journal of High Energy Physics.

[242]  Chao Zhang,et al.  Augmented signal processing in Liquid Argon Time Projection Chambers with a deep neural network , 2020, Journal of Instrumentation.

[243]  Pablo de Castro,et al.  INFERNO: Inference-Aware Neural Optimisation , 2018, Comput. Phys. Commun..

[245]  D. Whiteson,et al.  Foundations of a Fast, Data-Driven, Machine-Learned Simulator , 2021 .

[246]  P. Mendez Lorenzo,et al.  Three dimensional Generative Adversarial Networks for fast simulation , 2018, Journal of Physics: Conference Series.

[247]  B. Nachman,et al.  JHEP Boosting H → bb̄ with Machine Learning , 2018 .

[248]  F. Ratnikov,et al.  Simulating the Time Projection Chamber responses at the MPD detector using Generative Adversarial Networks , 2021, The European Physical Journal C.

[249]  Luke de Oliveira,et al.  Jet-images — deep learning edition , 2015, Journal of High Energy Physics.

[250]  Sofia Vallecorsa,et al.  3D convolutional GAN for fast simulation , 2019, EPJ Web of Conferences.

[251]  C. Collaboration,et al.  Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV , 2017, Journal of Instrumentation.

[252]  Mike Williams,et al.  Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree , 2012, 1210.6861.

[253]  Saúl Alonso-Monsalve,et al.  Image-Based Model Parameter Optimization Using Model-Assisted Generative Adversarial Networks , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[254]  Lingxiao Wang,et al.  Detecting the chiral magnetic effect via deep learning , 2021, Physical Review C.

[255]  Jet characterization in Heavy Ion Collisions by QCD-Aware Graph Neural Networks , 2021, 2103.14906.

[256]  Kazuhiro Terao,et al.  Point Proposal Network for Reconstructing 3D Particle Positions with Sub-Pixel Precision in Liquid Argon Time Projection Chambers , 2020, Physical Review D.

[257]  E. Lavrik,et al.  Optical Inspection of the Silicon Micro-strip Sensors for the CBM Experiment employing Artificial Intelligence , 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[258]  Huilin Qu,et al.  ParticleNet: Jet Tagging via Particle Clouds , 2019, Physical Review D.

[259]  F. Canelli,et al.  Unsupervised clustering for collider physics , 2020, Physical Review D.

[260]  Marco Rossi,et al.  PDFFlow: parton distribution functions on GPU , 2021, Comput. Phys. Commun..

[261]  Gregor Kasieczka,et al.  QCD or what? , 2018, SciPost Physics.

[262]  D. Whiteson,et al.  Uncertainty-aware machine learning for high energy physics , 2021, Physical Review D.

[263]  Chris Pollard,et al.  Transport away your problems: Calibrating stochastic simulations with optimal transport , 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[264]  F. Kahlhoefer,et al.  Casting a graph net to catch dark showers , 2020, SciPost Physics.

[265]  Isabelle Guyon,et al.  Adversarial learning to eliminate systematic errors: a case study in High Energy Physics , 2017, NIPS 2017.

[266]  Rob Verheyen,et al.  Phase space sampling and inference from weighted events with autoregressive flows , 2020, SciPost Physics.

[267]  Patrick T. Komiske,et al.  An operational definition of quark and gluon jets , 2018, Journal of High Energy Physics.

[268]  Toru Sato,et al.  Unveiling the pole structure of S-matrix using deep learning , 2021, Suplemento de la Revista Mexicana de Física.

[269]  Pierre Baldi,et al.  Parameterized neural networks for high-energy physics , 2016, The European Physical Journal C.

[270]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[271]  Anders Andreassen,et al.  OmniFold: A Method to Simultaneously Unfold All Observables. , 2020, Physical review letters.

[272]  Toru Sato,et al.  Classifying Near-Threshold Enhancement Using Deep Neural Network , 2021, Few-Body Systems.

[273]  Ana Diaz Rivero,et al.  Detecting Subhalos in Strong Gravitational Lens Images with Image Segmentation , 2020 .

[274]  Gabriel N. Perdue,et al.  Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster , 2021, Physical Review Accelerators and Beams.

[275]  Gianluca Cerminara,et al.  Anomaly Detection with Conditional Variational Autoencoders , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[276]  Jet Flavour Classification Using DeepJet , 2020, 2008.10519.

[277]  C. Frye,et al.  JUNIPR: a framework for unsupervised machine learning in particle physics , 2018, The European Physical Journal C.

[278]  G. Strong On the impact of modern deep-learning techniques to the performance and time-requirements of classification models in experimental high-energy physics , 2020, Mach. Learn. Sci. Technol..

[279]  Amir Farbin,et al.  Calorimetry with deep learning: particle simulation and reconstruction for collider physics , 2019, The European Physical Journal C.

[280]  Sofia Vallecorsa,et al.  Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations , 2021, AAAI Spring Symposium: MLPS.

[281]  D. A. Wickremasinghe,et al.  Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber , 2016, 1611.05531.

[282]  Michela Paganini,et al.  Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters , 2017, Journal of Physics: Conference Series.

[283]  Variational Autoencoders for Anomalous Jet Tagging , 2020, 2007.01850.

[284]  G. Kasieczka,et al.  Automating the ABCD method with machine learning , 2020, Physical Review D.

[285]  Jesse Thaler,et al.  Metric Space of Collider Events. , 2019, Physical review letters.

[286]  Jean-Roch Vlimant,et al.  Distributed Training and Optimization Of Neural Networks , 2020, Artificial Intelligence for High Energy Physics.

[287]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[288]  Wei-keng Liao,et al.  Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers , 2021, EPJ Web of Conferences.

[289]  A. Rogozhnikov,et al.  Reweighting with Boosted Decision Trees , 2016, 1608.05806.

[290]  Jan Stark,et al.  Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC , 2021, EPJ Web of Conferences.

[291]  L. Pang,et al.  Regressive and generative neural networks for scalar field theory , 2018, Physical Review D.

[292]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[293]  Sensing Higgs cascade decays through memory , 2020, 2008.08611.

[294]  Daniele Bonacorsi,et al.  MLaaS4HEP: Machine Learning as a Service for HEP , 2021, Computing and Software for Big Science.

[295]  Kazuhiro Terao,et al.  Machine learning at the energy and intensity frontiers of particle physics , 2018, Nature.

[296]  Maria Spiropulu,et al.  Pileup mitigation at the Large Hadron Collider with graph neural networks , 2018, The European Physical Journal Plus.

[297]  Steffen Schumann,et al.  Exploring phase space with Neural Importance Sampling , 2020 .

[298]  Scott D. Thomas,et al.  Strange Jet Tagging , 2020, 2003.09517.

[299]  Benjamin Nachman,et al.  Parameter estimation using neural networks in the presence of detector effects , 2021 .

[300]  Alexander Glazov,et al.  Machine learning as an instrument for data unfolding , 2017, 1712.01814.

[301]  Sung Hak Lim,et al.  Neural network-based top tagger with two-point energy correlations and geometry of soft emissions , 2020, Journal of High Energy Physics.

[302]  Javier Duarte,et al.  Charged Particle Tracking via Edge-Classifying Interaction Networks , 2021, Computing and Software for Big Science.

[305]  N. Castro,et al.  Finding new physics without learning about it: anomaly detection as a tool for searches at colliders , 2020, The European Physical Journal C.

[306]  A. Larkoski,et al.  How much information is in a jet? , 2017, 1704.08249.

[307]  D. Shih,et al.  Pulling out all the tops with computer vision and deep learning , 2018, Journal of High Energy Physics.

[308]  Charanjit K. Khosa,et al.  The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics , 2021, Reports on progress in physics. Physical Society.

[309]  G. Kasieczka,et al.  Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network , 2021, EPJ Web of Conferences.

[310]  Gilles Louppe,et al.  Learning to Pivot with Adversarial Networks , 2016, NIPS.

[311]  Daniel A. Lidar,et al.  Quantum adiabatic machine learning with zooming , 2019, ArXiv.

[312]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[313]  Suyong Choi,et al.  A data-driven event generator for Hadron Colliders using Wasserstein Generative Adversarial Network , 2021, Journal of the Korean Physical Society.

[314]  Y. Lei,et al.  Numerical analysis of neutrino physics within a high-scale supersymmetry model via machine learning , 2020, 2006.01495.

[315]  Kyle Cranmer,et al.  Flows for simultaneous manifold learning and density estimation , 2020, NeurIPS.

[316]  Marco Rossi,et al.  Deep Learning Strategies for ProtoDUNE Raw Data Denoising , 2022, Computing and Software for Big Science.

[317]  Javier Mauricio Duarte,et al.  Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics , 2020, ArXiv.

[318]  Sana Ketabchi Haghighat,et al.  DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC , 2019, Journal of High Energy Physics.

[319]  C. Neu,et al.  Benchmarking Machine Learning Techniques with Di-Higgs Production at the LHC , 2020, 2009.06754.

[320]  J. Monk,et al.  Deep learning as a parton shower , 2018, Journal of High Energy Physics.

[321]  Benjamin Nachman,et al.  Learning from many collider events at once , 2021 .

[322]  B. Nachman,et al.  Convolved substructure: analytically decorrelating jet substructure observables , 2017, 1710.06859.

[323]  Antoine Wehenkel,et al.  Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference , 2021, AISTATS.

[324]  B. Kerševan,et al.  Comparing traditional and deep-learning techniques of kinematic reconstruction for polarization discrimination in vector boson scattering , 2020, The European Physical Journal C.

[325]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[326]  Philip Harris,et al.  A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC , 2021, IEEE Transactions on Nuclear Science.

[327]  Alexander Mück,et al.  Autoencoders for unsupervised anomaly detection in high energy physics , 2021, Journal of High Energy Physics.

[328]  K. Helbing,et al.  A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory , 2021, ArXiv.

[329]  Maurizio Pierini,et al.  LHC analysis-specific datasets with Generative Adversarial Networks , 2019, ArXiv.

[330]  Javier Duarte,et al.  Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference , 2021, Frontiers in Artificial Intelligence.

[331]  Jack Y. Araz,et al.  Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks , 2021, Journal of High Energy Physics.

[332]  Kosei Dohi,et al.  Variational Autoencoders for Jet Simulation , 2020, 2009.04842.

[333]  Ullrich Kothe,et al.  Invertible networks or partons to detector and back again , 2020, 2006.06685.

[334]  Alexey Grobov,et al.  Boosted decision trees approach to neck alpha events discrimination in DEAP-3600 experiment , 2020 .

[335]  Stefan Wunsch,et al.  Optimal Statistical Inference in the Presence of Systematic Uncertainties Using Neural Network Optimization Based on Binned Poisson Likelihoods with Nuisance Parameters , 2020 .

[336]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[337]  Suyong Choi,et al.  Data-driven Estimation of Background Distribution through Neural Autoregressive Flows , 2020, 2008.03636.

[338]  Maria Spiropulu,et al.  MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks , 2021, The European Physical Journal C.

[340]  Sung Hak Lim,et al.  Interpretable deep learning for two-prong jet classification with jet spectra , 2019, Journal of High Energy Physics.

[341]  David Shih,et al.  Comparing weak- and unsupervised methods for resonant anomaly detection , 2021, The European Physical Journal C.

[342]  SHiP Collaboration Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks , 2019, Journal of Instrumentation.

[343]  S. S. Krishna Chaitanya Bulusu,et al.  Generalization capabilities of translationally equivariant neural networks , 2021, Physical Review D.

[344]  M. S. Albergo,et al.  Flow-based generative models for Markov chain Monte Carlo in lattice field theory , 2019, Physical Review D.

[345]  Uncovering hidden patterns in collider events with Bayesian probabilistic models , 2020, 2012.08579.

[346]  Daniel S. Katz,et al.  A FAIR and AI-ready Higgs Boson Decay Dataset , 2021, ArXiv.

[347]  Katy Craig,et al.  Linearized optimal transport for collider events , 2020, Physical Review D.

[348]  Sergei Gleyzer,et al.  Graph Generative Models for Fast Detector Simulations in High Energy Physics , 2021, ArXiv.

[350]  M. Dolan,et al.  Equivariant energy flow networks for jet tagging , 2020, Physical Review D.

[351]  D Martschei,et al.  Advanced event reweighting using multivariate analysis , 2012 .

[352]  CMS Collaboration A deep neural network to search for new long-lived particles decaying to jets , 2020, Mach. Learn. Sci. Technol..

[353]  Stefan Wunsch,et al.  Reducing the Dependence of the Neural Network Function to Systematic Uncertainties in the Input Space , 2019, Computing and Software for Big Science.

[354]  Charanjit K. Khosa,et al.  WIMPs or else? Using Machine Learning to disentangle LHC signatures , 2019 .

[355]  Marian Stahl,et al.  An updated hybrid deep learning algorithm for identifying and locating primary vertices , 2020, 2007.01023.

[356]  Yutaro Iiyama,et al.  Learning representations of irregular particle-detector geometry with distance-weighted graph networks , 2019, The European Physical Journal C.

[357]  Francesco Leone,et al.  UvA-DARE (Digital Academic Repository) Event reconstruction for KM3NeT/ORCA using convolutional neural networks , 2020 .

[358]  T. Roy,et al.  A robust anomaly finder based on autoencoder , 2019, 1903.02032.

[359]  B. Nachman,et al.  Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning , 2017, Physics Reports.

[360]  N. Castro,et al.  Deep Learning for the classification of quenched jets , 2021, Journal of High Energy Physics.

[361]  Andreas Salzburger,et al.  Hashing and metric learning for charged particle tracking , 2021, ArXiv.

[362]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[363]  M. White,et al.  Combining outlier analysis algorithms to identify new physics at the LHC , 2020, Journal of High Energy Physics.

[364]  Nikita Kazeev,et al.  Cherenkov Detectors Fast Simulation Using Neural Networks , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[366]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[367]  Yuxin Chen,et al.  Towards an Interpretable Data-driven Trigger System for High-throughput Physics Facilities , 2021, ArXiv.

[368]  Peterson,et al.  Finding gluon jets with a neural trigger. , 1990, Physical review letters.

[369]  Peter Onyisi,et al.  Mixture Density Network Estimation of Continuous Variable Maximum Likelihood Using Discrete Training Samples , 2021, The European Physical Journal C.

[370]  Isabelle Guyon,et al.  The Tracking Machine Learning Challenge: Throughput Phase , 2021, Computing and Software for Big Science.

[371]  Yu-Chen Guo,et al.  Extract the energy scale of anomalous γγ → W+W− scattering in the vector boson scattering process using artificial neural networks , 2021, Journal of High Energy Physics.

[372]  Patrick T. Komiske,et al.  Energy flow polynomials: a complete linear basis for jet substructure , 2017, 1712.07124.

[373]  B. Nachman,et al.  Anomaly Detection for Resonant New Physics with Machine Learning. , 2018, Physical review letters.

[374]  Cécile Germain,et al.  The Tracking Machine Learning Challenge: Accuracy Phase , 2019, The NeurIPS '18 Competition.

[375]  Kamil Deja,et al.  End-to-End Sinkhorn Autoencoder With Noise Generator , 2020, IEEE Access.

[376]  Patrick T. Komiske,et al.  Energy flow networks: deep sets for particle jets , 2018, Journal of High Energy Physics.

[377]  An Attention Based Neural Network for Jet Tagging , 2020, 2009.00170.

[378]  C. Chiang,et al.  Distinguishing W′ signals at hadron colliders using neural networks , 2020, 2007.14586.

[379]  Charanjit K. Khosa,et al.  Higgs tagging with the Lund jet plane , 2021 .

[380]  H. Stöcker,et al.  Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning , 2019, The European Physical Journal C.

[381]  Javier Duarte,et al.  Fast inference of Boosted Decision Trees in FPGAs for particle physics , 2020, Journal of Instrumentation.

[382]  Charanjit K. Khosa,et al.  Exploring the standard model EFT in VH production with machine learning , 2019, Physical Review D.

[383]  Benjamin Nachman,et al.  Simulation-assisted decorrelation for resonant anomaly detection , 2020, Physical Review D.

[384]  J. Cogan,et al.  Jet-images: computer vision inspired techniques for jet tagging , 2014, 1407.5675.

[385]  S. Vallecorsa,et al.  Generative models for fast simulation , 2018, Journal of Physics: Conference Series.

[386]  Sascha Caron,et al.  The BSM-AI project: SUSY-AI–generalizing LHC limits on supersymmetry with machine learning , 2016, The European Physical Journal C.

[387]  J. Kieseler Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data , 2020, The European Physical Journal C.

[388]  Kazuhiro Terao,et al.  Scalable, Proposal-free Instance Segmentation Network for 3D Pixel Clustering and Particle Trajectory Reconstruction in Liquid Argon Time Projection Chambers , 2020, ArXiv.

[389]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[390]  R. Webb,et al.  Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique , 2020, Physical Review D.

[391]  S. Caron,et al.  Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC , 2021, SciPost Physics.

[393]  J M Clavijo,et al.  Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier , 2020, Mach. Learn. Sci. Technol..

[394]  Sofia Vallecorsa,et al.  Higgs analysis with quantum classifiers , 2021, EPJ Web of Conferences.

[395]  Lester W. Mackey,et al.  Fuzzy jets , 2015, 1509.02216.

[396]  Thong Q. Nguyen,et al.  Deep topology classifiers for a more efficient trigger selection at the LHC , 2017 .

[397]  Yasir Alanazi,et al.  A survey of machine learning-based physics event generation , 2021, IJCAI.