Structural properties of epitaxial TiO_2 films grown on sapphire (11$\overline 1$0) by MOCVD

Titanium dioxide thin films were grown on sapphire (11{bar 2}0) substrates in a low-pressure metal-organic chemical vapor deposition system at temperatures ranging from 400 to 800 {degree}C. Raman scattering, x-ray diffraction, transmission electron microscopy, and high resolution electron microscopy techniques were employed to characterize the structural properties of the deposited films. The resultant phases and structures of the deposited films depended on both the growth temperature and the substrate surface properties (surface imperfections, steps, etc.). At the growth temperature of 800 {degree}C, single-crystal rutile films were obtained reproducibly with two possible epitaxial relationships. At lower temperatures (400 to 775 {degree}C), the deposited films can be epitaxial or polycrystalline with highly oriented grains. The similarity between the atomic arrangements of the substrate and the film is discussed in detail to explain the observed epitaxial relationships and abruptness of the interfaces.

[1]  E Pelletier,et al.  In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters. , 1986, Applied optics.

[2]  J. Liaw,et al.  Growth and characterization of LPE hexagonal ferrites , 1978 .

[3]  B. Hyde,et al.  Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics , 1972 .

[4]  H. L. Chang,et al.  Study of defects and interfaces on the atomic scale in epitaxial tio2 thin films on sapphire , 1992 .

[5]  Z. Liliental-Weber,et al.  Defects in materials , 1991 .

[6]  S. Krishnaswamy,et al.  Growth and properties of piezoelectric and ferroelectric films , 1990 .

[7]  T. C. Damen,et al.  Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .

[8]  W. Kaiser,et al.  TiO2 film oxygen sensors made by chemical vapour deposition from organometallics , 1983 .

[9]  H. Kanaya,et al.  Structural, ferroelectric, and pyroelectric properties of highly c‐axis oriented Pb1−xCaxTiO3 thin film grown by radio‐frequency magnetron sputtering , 1988 .

[10]  Y. Kobayashi,et al.  Epitaxial growth of wo3 thin films on mgo and al2o3 , 1989 .

[11]  A. Hippel,et al.  Protons, dipoles, and charge carriers in rutile in rutile☆ , 1962 .

[12]  H. Pulker,et al.  Refractive indices of TiO(2) films produced by reactive evaporation of various titanium-oxygen phases. , 1976, Applied optics.

[13]  A. E. Feuersanger Titanium-dioxide dielectric films prepared by vapor reaction , 1964 .

[14]  H. Lehmann,et al.  Optimizing deposition parameters of electron beam evaporated TiO(2) films. , 1988, Applied optics.

[15]  F. A. Grant Properties of Rutile (Titanium Dioxide) , 1959 .

[16]  Y. Lam,et al.  A simple chemical vapour deposition method for depositing thin TiO2 films , 1983 .

[17]  S. Kurtz,et al.  Chemical vapor deposition of doped TiO2 thin films , 1987 .

[18]  Y. Takahashi,et al.  Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate , 1985 .

[19]  B. Hyde,et al.  Inorganic Crystal Structures , 1989 .

[20]  P. G. Wahlbeck,et al.  Reinvestigation of the Phase Diagram for the System Titanium–Oxygen , 1966 .

[21]  E. Kaldis Current Topics in Materials Science , 1980 .

[22]  H. Frederikse Recent Studies on Rutile (TiO2) , 1961 .

[23]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[24]  K. J. Sladek,et al.  TiO2 Film Properties as a Function of Processing Temperature , 1972 .

[25]  Gerald B. Stringfellow,et al.  Fundamental issues in heteroepitaxy—A Department of Energy, Council on Materials Science Panel Report , 1990 .