Bifurcation analysis applied to a model of motion integration with a multistable stimulus

A computational study into the motion perception dynamics of a multistable psychophysics stimulus is presented. A diagonally drifting grating viewed through a square aperture is perceived as moving in the actual grating direction or in line with the aperture edges (horizontally or vertically). The different percepts are the product of interplay between ambiguous contour cues and specific terminator cues. We present a dynamical model of motion integration that performs direction selection for such a stimulus and link the different percepts to coexisting steady states of the underlying equations. We apply the powerful tools of bifurcation analysis and numerical continuation to study changes to the model’s solution structure under the variation of parameters. Indeed, we apply these tools in a systematic way, taking into account biological and mathematical constraints, in order to fix model parameters. A region of parameter space is identified for which the model reproduces the qualitative behaviour observed in experiments. The temporal dynamics of motion integration are studied within this region; specifically, the effect of varying the stimulus gain is studied, which allows for qualitative predictions to be made.

[1]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[2]  James Rankin,et al.  Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis , 2013, Journal of mathematical biology.

[3]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[4]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[5]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[6]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[7]  S. Amari,et al.  Characteristics of Random Nets of Analog Neuron-Like Elements , 1972, IEEE Trans. Syst. Man Cybern..

[8]  R. Blake © 2001 Kluwer Academic Publishers. Printed in the Netherlands. 5 A Primer on Binocular Rivalry, Including Current Controversies , 2000 .

[9]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[10]  M. Haragus,et al.  Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .

[11]  Martin Golubitsky,et al.  Bifurcation on the Visual Cortex with Weakly Anisotropic Lateral Coupling , 2003, SIAM J. Appl. Dyn. Syst..

[12]  S. Grossberg,et al.  Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. , 2007, Spatial vision.

[13]  Yixin Guo,et al.  Existence and stability of standing pulses in neural networks , 2003 .

[14]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .

[15]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[16]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[17]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[18]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[19]  Pascal Chossat,et al.  Analysis of a hyperbolic geometric model for visual texture perception , 2011, Journal of mathematical neuroscience.

[20]  Paul C Bressloff,et al.  Nonlocal Ginzburg-Landau equation for cortical pattern formation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Olivier D. Faugeras,et al.  Absolute Stability and Complete Synchronization in a Class of Neural Fields Models , 2008, SIAM J. Appl. Math..

[22]  S. Coombes,et al.  Bumps, breathers, and waves in a neural network with spike frequency adaptation. , 2005, Physical review letters.

[23]  E Castet,et al.  Long-range interactions in the spatial integration of motion signals. , 1999, Spatial vision.

[24]  P. Matthews,et al.  Dynamic instabilities in scalar neural field equations with space-dependent delays , 2007 .

[25]  Alex Roxin,et al.  How effective delays shape oscillatory dynamics in neuronal networks , 2009, 0905.0701.

[26]  Heiko Neumann,et al.  Interactions of motion and form in visual cortex – A neural model , 2008, Journal of Physiology-Paris.

[27]  Bard Ermentrout,et al.  Stimulus-Driven Traveling Solutions in Continuum Neuronal Models with a General Smooth Firing Rate Function , 2010, SIAM J. Appl. Math..

[28]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[29]  Gustavo Deco,et al.  The role of multi-area interactions for the computation of apparent motion , 2010, NeuroImage.

[30]  J. Zanker,et al.  The Directional Tuning of the Barber-Pole Illusion , 2001, Perception.

[31]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[32]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[33]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Heiko Neumann,et al.  Disambiguating Visual Motion by Form-Motion Interaction—a Computational Model , 2007, International Journal of Computer Vision.

[35]  Alexander Grunewald,et al.  Orthogonal motion after-effect illusion predicted by a model of cortical motion processing , 1996, Nature.

[36]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  Bard Ermentrout,et al.  Pattern Formation in a Network of Excitatory and Inhibitory Cells with Adaptation , 2004, SIAM J. Appl. Dyn. Syst..

[38]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[39]  D. Liley,et al.  Modeling electrocortical activity through improved local approximations of integral neural field equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Alain Finkel,et al.  World Scientific Publishing Company , 2013 .

[41]  P. Kornprobst,et al.  Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism , 2010, Vision Research.

[42]  Guillaume S Masson,et al.  Temporal dynamics of 2D motion integration for ocular following in macaque monkeys. , 2010, Journal of neurophysiology.

[43]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[44]  F. Kooi Local direction of edge motion causes and abolishes the barberpole illusion , 1993, Vision Research.

[45]  P. Chossat,et al.  Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .

[46]  Ennio Mingolla,et al.  Neural models of motion integration and segmentation , 2003, Neural Networks.

[47]  M. Giese Dynamic neural field theory for motion perception , 1998 .

[48]  Eric Castet,et al.  The extrinsic/intrinsic classification of two-dimensional motion signals with barber-pole stimuli , 1999, Vision Research.

[49]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Shapley,et al.  “On the Visually Perceived Direction of Motion” by Hans Wallach: 60 Years Later , 1996 .

[51]  H. Wallach On the visually perceived direction of motion ' ' by Hans Wallach : 60 years later , 1997 .

[52]  Thomas Wennekers,et al.  Pattern formation in intracortical neuronal fields , 2003, Network.

[53]  Boris S. Gutkin,et al.  Multiple Bumps in a Neuronal Model of Working Memory , 2002, SIAM J. Appl. Math..

[54]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[55]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[56]  Heiko Neumann,et al.  Disambiguating Visual Motion Through Contextual Feedback Modulation , 2004, Neural Computation.

[57]  B. Ermentrout,et al.  Response of traveling waves to transient inputs in neural fields. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[60]  R. Veltz Nonlinear analysis methods in neural field models , 2011 .

[61]  S. Grossberg,et al.  Neural dynamics of motion processing and speed discrimination , 1998, Vision Research.

[62]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  Shun-ichi Amari,et al.  Characteristics of randomly connected threshold-element networks and network systems , 1971 .

[64]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[65]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[66]  E. Castet,et al.  Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies , 2000, Visual Neuroscience.

[67]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[68]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[69]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[70]  J. Cowan,et al.  Large Scale Spatially Organized Activity in Neural Nets , 1980 .

[71]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[72]  Pierre Kornprobst,et al.  Bio-inspired motion estimation { From modelling to evaluation, can biology be a source of inspiration? , 2010 .

[73]  Ricardo Gattass,et al.  Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey , 2003, The Journal of Neuroscience.