The emergence of gravitational wave science: 100 years of development of mathematical theory, detectors, numerical algorithms, and data analysis tools

On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature and that provided the first observed signals.

[1]  D.,et al.  The global nonlinear stability of the Minkowski space , 2018 .

[2]  C. Collard,et al.  Traveling at the Speed of Thought , 2017, PAJ: A Journal of Performance and Art.

[3]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[4]  R. Bonnand,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[5]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[6]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[7]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[8]  B. A. Boom,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[9]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[10]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[11]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[12]  Amit Kumar Srivastava,et al.  Properties of the Binary Black Hole Merger GW 150914 , 2016 .

[13]  Kathy Svitil Gravitational waves detected 100 years after Einstein's prediction : astronomy , 2016 .

[14]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[15]  N. Cang Nonexistence and Nonuniqueness Results for Solutions to the Vacuum Einstein Conformal Constraint Equations , 2015, 1507.01081.

[16]  Christian P. Robert,et al.  Bayesian computation: a summary of the current state, and samples backwards and forwards , 2015, Statistics and Computing.

[17]  Bifurcating Solutions of the Lichnerowicz Equation , 2015, 1506.00101.

[18]  M. Holst,et al.  Rough solutions of the Einstein Constraint Equations on Asymptotically Flat Manifolds without Near-CMC Conditions , 2015, 1504.04661.

[19]  L. Lehner,et al.  Probing Strong Field Gravity Through Numerical Simulations , 2015, 1502.06853.

[20]  C. Nguyen,et al.  Solutions to the Einstein-scalar field constraint equations with a small TT-tensor , 2015, 1502.05164.

[21]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[22]  Rory Smith,et al.  Accelerated gravitational wave parameter estimation with reduced order modeling. , 2014, Physical review letters.

[23]  Scott E. Field,et al.  Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models , 2015 .

[24]  David Maxwell Conformal Parameterizations of Slices of Flat Kasner Spacetimes , 2014, Annales Henri Poincaré.

[25]  Romain Gicquaud,et al.  A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor , 2014, 1403.5655.

[26]  M. Holst,et al.  Non-CMC solutions to the Einstein constraint equations on asymptotically Euclidean manifolds with apparent horizon boundaries , 2014, 1403.4549.

[27]  I. Rodnianski,et al.  Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M , 2014, 1402.7034.

[28]  David Maxwell The conformal method and the conformal thin-sandwich method are the same , 2014, 1402.5585.

[29]  James D. Dilts The Einstein constraint equations on compact manifolds with boundary , 2013, 1310.2303.

[30]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[31]  James D. Dilts,et al.  Non-CMC solutions of the Einstein constraint equations on asymptotically Euclidean manifolds , 2013, 1507.01913.

[32]  G. Tsogtgerel,et al.  Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries , 2013, 1310.2302.

[33]  Bruno Premoselli Effective multiplicity for the Einstein-scalar field Lichnerowicz equation , 2013, 1307.2416.

[34]  M. Holst,et al.  The Lichnerowicz equation on compact manifolds with boundary , 2013, 1306.1801.

[35]  Thomas J. Loredo,et al.  Bayesian astrostatistics: a backward look to the future , 2012, 1208.3036.

[36]  Non-uniqueness of Solutions to the Conformal Formulation , 2012, 1210.2156.

[37]  O. Sarbach,et al.  Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations , 2012, Living Reviews in Relativity.

[38]  R. Mazzeo,et al.  Initial data sets with ends of cylindrical type: II. The vector constraint equation , 2012, 1203.5138.

[39]  P. Chruściel,et al.  Initial Data Sets with Ends of Cylindrical Type: I. The Lichnerowicz Equation , 2012, 1201.4937.

[40]  E. Humbert,et al.  A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method , 2010, 1012.2188.

[41]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[42]  P. Chruściel,et al.  Stationary Black Holes: Uniqueness and Beyond , 1998, Living Reviews in Relativity.

[43]  W. Marsden I and J , 2012 .

[44]  Eric Gourgoulhon,et al.  Numerical Relativity: Solving Einstein's Equations on the Computer , 2011 .

[45]  Michele Vallisneri,et al.  Beyond the fisher-matrix formalism: exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation. , 2011, Physical review letters.

[46]  Numerical bifurcation analysis of conformal formulations of the Einstein constraints , 2011, 1107.0262.

[47]  D. Pollack,et al.  Scalar Curvature and the Einstein Constraint Equations , 2011, 1102.5050.

[48]  Chris L. Fryer,et al.  Gravitational Waves from Gravitational Collapse , 2011, Living reviews in relativity.

[49]  T. Regimbau The astrophysical gravitational wave stochastic background , 2011, 1101.2762.

[50]  David Maxwell A Model Problem for Conformal Parameterizations of the Einstein Constraint Equations , 2009, 0909.5674.

[51]  D. Rickles,et al.  The role of gravitation in physics : report from the 1957 Chapel Hill Conference , 2011 .

[52]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[53]  D. Pollack,et al.  Mathematical general relativity: A sampler , 2010, 1004.1016.

[54]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[55]  L. Mazzieri Generalized gluing for Einstein constraint equations , 2009 .

[56]  R. Prix,et al.  Random template banks and relaxed lattice coverings , 2008, 0809.5223.

[57]  Oscar A. Reula,et al.  Boundary Conditions for Coupled Quasilinear Wave Equations with Application to Isolated Systems , 2008, 0807.3207.

[58]  Y. Choquet-bruhat General Relativity and the Einstein Equations , 2009 .

[59]  Jin Jiang,et al.  Time-frequency feature representation using energy concentration: An overview of recent advances , 2009, Digit. Signal Process..

[60]  D. Christodoulou The Formation of Black Holes in General Relativity , 2008, 0805.3880.

[61]  David Maxwell A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature , 2008, 0804.0874.

[62]  Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics. , 2008, Physical review letters.

[63]  J. D. Brown Puncture evolution of Schwarzschild black holes , 2007, 0705.1359.

[64]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[65]  M. Holst,et al.  Rough Solutions of the Einstein Constraints on Closed Manifolds without Near-CMC Conditions , 2007, 0712.0798.

[66]  S. Ravi Bayesian Logical Data Analysis for the Physical Sciences: a Comparative Approach with Mathematica® Support , 2007 .

[67]  Reinhard Prix,et al.  Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces , 2007, 0707.0428.

[68]  Daniel Kennefick,et al.  Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves , 2007 .

[69]  D. M. Walsh Non-uniqueness in conformal formulations of the Einstein constraints , 2006, gr-qc/0610129.

[70]  H. Pfeiffer,et al.  Einstein constraints: Uniqueness and nonuniqueness in the conformal thin sandwich approach , 2006, gr-qc/0610120.

[71]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[72]  H. Kreiss,et al.  Problems which are well posed in a generalized sense with applications to the Einstein equations , 2006, gr-qc/0602051.

[73]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[74]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[75]  Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 2006, Naturwissenschaften.

[76]  M. Stanley Gravity's Shadow: The Search for Gravitational Waves , 2005 .

[77]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[78]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[79]  S. Dain Generalized Korn's inequality and conformal Killing vectors , 2005, gr-qc/0505022.

[80]  H. Pfeiffer,et al.  Uniqueness and nonuniqueness in the Einstein constraints. , 2005, Physical review letters.

[81]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[82]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[83]  J. L. Jaramillo,et al.  On the existence of initial data containing isolated black holes , 2004, gr-qc/0412061.

[84]  D. Pollack,et al.  Initial Data Engineering , 2004, gr-qc/0403066.

[85]  I. Rodnianski,et al.  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[86]  S. Dain CORRIGENDUM: Trapped surfaces as boundaries for the constraint equations , 2003, gr-qc/0308009.

[87]  H. Waldeyer Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 1915, Naturwissenschaften.

[88]  S Dain Trapped surfaces as boundaries for the constraint equations , 2005 .

[89]  H. Pfeiffer THE INITIAL VALUE PROBLEM IN NUMERICAL RELATIVITY , 2004, gr-qc/0412002.

[90]  Optimal constraint projection for hyperbolic evolution systems , 2004, gr-qc/0407011.

[91]  David Maxwell Rough solutions of the Einstein constraint equations , 2004, gr-qc/0405088.

[92]  Y. Choquet-bruhat Einstein constraints on compact n-dimensional manifolds , 2004 .

[93]  David Maxwell Solutions of the Einstein Constraint Equations with Apparent Horizon Boundaries , 2003, gr-qc/0307117.

[94]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[95]  R. Schoen,et al.  On the Asymptotics for the Vacuum Einstein Constraint Equations , 2003, gr-qc/0301071.

[96]  P. Chruściel,et al.  On mapping properties of the general relativistic constraints operator in weighted function spaces , 2003, gr-qc/0301073.

[97]  E. Porter,et al.  Elliptical tiling method to generate a 2-dimensional set of templates for gravitational wave search , 2002, gr-qc/0211064.

[98]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[99]  Robert Bartnik,et al.  The Constraint equations , 2002 .

[100]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[101]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[102]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[103]  Justin Corvino Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations , 2000 .

[104]  J. Frauendiener Conformal Infinity , 2000, Living reviews in relativity.

[105]  G. B. Cook Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[106]  Jr.,et al.  Einstein constraints on asymptotically Euclidean manifolds , 1999, gr-qc/9906095.

[107]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[108]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[109]  Saul A. Teukolsky,et al.  Numerical relativity: challenges for computational science , 1999, Acta Numerica.

[110]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[111]  Oscar A. Reula,et al.  Einstein’s equations with asymptotically stable constraint propagation , 1998, Journal of Mathematical Physics.

[112]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[113]  T. Sauer The Relativity of Discovery: Hilberts First Note on the Foundations of Physics , 1998, physics/9811050.

[114]  Nelson Christensen,et al.  Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .

[115]  M. Heusler Stationary Black Holes: Uniqueness and Beyond , 1998, Living reviews in relativity.

[116]  M. Holst,et al.  A 3D Finite Element Solver for the Initial Value Problem , 1998 .

[117]  J. Stachel,et al.  Belated Decision in the Hilbert-Einstein Priority Dispute , 1997 .

[118]  Vincent Moncrief,et al.  A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds , 1996 .

[119]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[120]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[121]  James Isenberg,et al.  Constant mean curvature solutions of the Einstein constraint equations on closed manifolds , 1995 .

[122]  Flanagan Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. , 1993, Physical review. D, Particles and fields.

[123]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[124]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[125]  Cook,et al.  Initial data for axisymmetric black-hole collisions. , 1991, Physical review. D, Particles and fields.

[126]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[127]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[128]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[129]  B. Whiting Mode stability of the Kerr black hole. , 1989 .

[130]  R. Wald,et al.  Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere , 1987 .

[131]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[132]  Gian-Carlo Rota,et al.  History of Computing in the Twentieth Century , 1980 .

[133]  J. York,et al.  Time-asymmetric initial data for black holes and black-hole collisions , 1980 .

[134]  Gian-Carlo Rota,et al.  A history of computing in the twentieth century : a collection of essays , 1980 .

[135]  W. Press,et al.  Gravitational waves. , 1980, Science.

[136]  Jerrold E. Marsden,et al.  The structure of the space of solutions of Einstein's equations. I. One Killing field. , 1980 .

[137]  Larry Smarr,et al.  SPACE‐TIMES GENERATED BY COMPUTERS: BLACK HOLES WITH GRAVITATIONAL RADIATION * , 1977 .

[138]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[139]  J. Hough,et al.  Search for continuous gravitational radiation , 1975, Nature.

[140]  The Numerical Evolution of the Collision of Two Black Holes. , 1975 .

[141]  J. York,et al.  Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds , 1973 .

[142]  J. York Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .

[143]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[144]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[145]  J. Weber Evidence for discovery of gravitational radiation , 1969 .

[146]  H. Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .

[147]  Susan G. Hahn,et al.  The two-body problem in geometrodynamics , 1964 .

[148]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[149]  Stanley Deser,et al.  Canonical variables for general relativity , 1960 .

[150]  Stanley Deser,et al.  Dynamical Structure and Definition of Energy in General Relativity , 1959 .

[151]  Susan G. Hahn Stability criteria for difference schemes , 1958 .

[152]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[153]  G. Darmois,et al.  Théories relativistes de la gravitation et de l'électromagnétisme : relativisté générale et théories unitaires , 1955 .

[154]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[155]  Y. Fourès-Bruhat,et al.  Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .

[156]  J.,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[157]  G. Darmois Les équations de la gravitation einsteinienne , 1927 .

[158]  Adolf Smekal,et al.  Die Grundlagen der Physik , 1922 .

[159]  Albert Einstein,et al.  Approximative Integration of the Field Equations of Gravitation , 1916 .

[160]  Die Grundlagen der Physik. 1. , 1915 .