Are the eigenvalues of the B‐spline isogeometric analysis approximation of −Δu = λu known in almost closed form?

Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu = λu known in almost closed form?

[1]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[2]  Hendrik Speleers,et al.  Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .

[3]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[4]  Stefano Serra Capizzano,et al.  Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..

[5]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[6]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[7]  Carlo Garoni Spectral distribution of PDE discretization matrices from isogeometric analysis: the case of $L^1$ coefficients and non-regular geometry , 2018 .

[8]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .

[9]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..

[10]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[11]  Enrico Bozzo,et al.  On the Use of Certain Matrix Algebras Associated with Discrete Trigonometric Transforms in Matrix Displacement Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[12]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[13]  Stefano Serra,et al.  On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .

[14]  Albrecht Böttcher,et al.  Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..

[15]  Albrecht Böttcher,et al.  Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .

[16]  Hehu Xie,et al.  Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods , 2008 .

[17]  Stefano Serra Capizzano,et al.  Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? , 2017, Numerical Algorithms.

[18]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[19]  Carlo Garoni,et al.  A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices , 2018, Numerical Algorithms.

[20]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : A spectral analysis tool for discretized differential equations , 2018 .

[21]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[22]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[23]  Sergei M. Grudsky,et al.  Eigenvalues of Hermitian Toeplitz Matrices Generated by Simple-loop Symbols with Relaxed Smoothness , 2017 .

[24]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[25]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[26]  Hendrik Speleers,et al.  Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review , 2019, Archives of Computational Methods in Engineering.

[27]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .