Series expansion for functional sufficient dimension reduction

Functional data are infinite-dimensional statistical objects which pose significant challenges to both theorists and practitioners. Both parametric and nonparametric regressions have received attention in the functional data analysis literature. However, the former imposes stringent constraints while the latter suffers from logarithmic convergence rates. In this article, we consider two popular sufficient dimension reduction methods in the context of functional data analysis, which, if desired, can be combined with low-dimensional nonparametric regression in a later step. In computation, predictor processes and index vectors are approximated in finite dimensional spaces using the series expansion approach. In theory, the basis used can be either fixed or estimated, which include both functional principal components and B-spline basis. Thus our study is more general than previous ones. Numerical results from simulations and a real data analysis are presented to illustrate the methods.

[1]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[2]  Ana M. Aguilera,et al.  Estimation of Functional Regression Models for Functional Responses by Wavelet Approximation , 2008 .

[3]  R. Cook Graphics for regressions with a binary response , 1996 .

[4]  Shie-Shien Yang,et al.  General Distribution Theory of the Concomitants of Order Statistics , 1977 .

[5]  R. D. Cook,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY OF A METHOD FOR SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2010 .

[6]  Kenji Fukumizu,et al.  Statistical Consistency of Kernel Canonical Correlation Analysis , 2007 .

[7]  R. Cook,et al.  Dimension Reduction in Binary Response Regression , 1999 .

[8]  Shaoli Wang,et al.  On Directional Regression for Dimension Reduction , 2007 .

[9]  Lixing Zhu,et al.  Asymptotics of sliced inverse regression , 1995 .

[10]  Frédéric Ferraty,et al.  Cross-validated estimations in the single-functional index model , 2008 .

[11]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[12]  Aurore Delaigle,et al.  Methodology and theory for partial least squares applied to functional data , 2012, 1205.6367.

[13]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[14]  Bing Li,et al.  Successive direction extraction for estimating the central subspace in a multiple-index regression , 2008 .

[15]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[16]  Lixing Zhu,et al.  Sufficient dimension reduction through discretization-expectation estimation , 2010 .

[17]  L. Ferré,et al.  Smoothed Functional Inverse Regression , 2005 .

[18]  Philippe Vieu,et al.  Semi-functional partial linear regression , 2006 .

[19]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[20]  R. Cook,et al.  Sufficient Dimension Reduction via Inverse Regression , 2005 .

[21]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[22]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[23]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[24]  Lixing Zhu,et al.  Asymptotics for sliced average variance estimation , 2007, 0708.0462.

[25]  Frédéric Ferraty,et al.  The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..

[26]  Raymond J. Carroll,et al.  An Asymptotic Theory for Sliced Inverse Regression , 1992 .

[27]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[28]  Benoit Liquet,et al.  A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches , 2012, Comput. Stat..

[29]  Lixing Zhu,et al.  Dimension Reduction in Regressions Through Cumulative Slicing Estimation , 2010 .

[30]  R. Cook On the Interpretation of Regression Plots , 1994 .

[31]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[32]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[33]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[34]  Heung Wong,et al.  Functional-coefficient partially linear regression model , 2008 .

[35]  R. Cook,et al.  Dimension reduction for the conditional kth moment in regression , 2002 .

[36]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[37]  C. Preda Regression models for functional data by reproducing kernel Hilbert spaces methods , 2007 .