Series expansion for functional sufficient dimension reduction
暂无分享,去创建一个
Heng Lian | Gaorong Li | H. Lian | Gaorong Li
[1] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[2] Ana M. Aguilera,et al. Estimation of Functional Regression Models for Functional Responses by Wavelet Approximation , 2008 .
[3] R. Cook. Graphics for regressions with a binary response , 1996 .
[4] Shie-Shien Yang,et al. General Distribution Theory of the Concomitants of Order Statistics , 1977 .
[5] R. D. Cook,et al. NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY OF A METHOD FOR SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2010 .
[6] Kenji Fukumizu,et al. Statistical Consistency of Kernel Canonical Correlation Analysis , 2007 .
[7] R. Cook,et al. Dimension Reduction in Binary Response Regression , 1999 .
[8] Shaoli Wang,et al. On Directional Regression for Dimension Reduction , 2007 .
[9] Lixing Zhu,et al. Asymptotics of sliced inverse regression , 1995 .
[10] Frédéric Ferraty,et al. Cross-validated estimations in the single-functional index model , 2008 .
[11] L. Ferré,et al. Functional sliced inverse regression analysis , 2003 .
[12] Aurore Delaigle,et al. Methodology and theory for partial least squares applied to functional data , 2012, 1205.6367.
[13] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[14] Bing Li,et al. Successive direction extraction for estimating the central subspace in a multiple-index regression , 2008 .
[15] Robert B. Gramacy,et al. Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .
[16] Lixing Zhu,et al. Sufficient dimension reduction through discretization-expectation estimation , 2010 .
[17] L. Ferré,et al. Smoothed Functional Inverse Regression , 2005 .
[18] Philippe Vieu,et al. Semi-functional partial linear regression , 2006 .
[19] B. Silverman,et al. Functional Data Analysis , 1997 .
[20] R. Cook,et al. Sufficient Dimension Reduction via Inverse Regression , 2005 .
[21] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[22] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[23] P. Hall,et al. Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.
[24] Lixing Zhu,et al. Asymptotics for sliced average variance estimation , 2007, 0708.0462.
[25] Frédéric Ferraty,et al. The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..
[26] Raymond J. Carroll,et al. An Asymptotic Theory for Sliced Inverse Regression , 1992 .
[27] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[28] Benoit Liquet,et al. A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches , 2012, Comput. Stat..
[29] Lixing Zhu,et al. Dimension Reduction in Regressions Through Cumulative Slicing Estimation , 2010 .
[30] R. Cook. On the Interpretation of Regression Plots , 1994 .
[31] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[32] K. Fang,et al. Asymptotics for kernel estimate of sliced inverse regression , 1996 .
[33] Ker-Chau Li,et al. Slicing Regression: A Link-Free Regression Method , 1991 .
[34] Heung Wong,et al. Functional-coefficient partially linear regression model , 2008 .
[35] R. Cook,et al. Dimension reduction for the conditional kth moment in regression , 2002 .
[36] S. Weisberg,et al. Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .
[37] C. Preda. Regression models for functional data by reproducing kernel Hilbert spaces methods , 2007 .