New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.

Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.

[1]  Thomas C. Terwilliger,et al.  Reciprocal-space solvent flattening , 1999, Acta crystallographica. Section D, Biological crystallography.

[2]  K D Cowtan,et al.  Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. , 1993, Acta crystallographica. Section D, Biological crystallography.

[3]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[4]  R. Huber,et al.  An Analytical Packing Function Employing Fourier Transforms , 1991 .

[5]  Barry F. Smith,et al.  Molecular replacement by evolutionary search. , 2001, Acta crystallographica. Section D, Biological crystallography.

[6]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[7]  A. Wilson,et al.  The probability distribution of X-ray intensities , 1949 .

[8]  Claudia S Maier,et al.  A covalent modification of NADP+ revealed by the atomic resolution structure of FprA, a Mycobacterium tuberculosis oxidoreductase. , 2002, Biochemistry.

[9]  K Cowtan,et al.  Combining constraints for electron-density modification. , 1997, Methods in enzymology.

[10]  Simulated annealing for phasing using spatial constraints , 1995 .

[11]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[12]  G. A. Sim,et al.  The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy‐atom method for non‐centrosymmetrical structures , 1959 .

[13]  J P Abrahams,et al.  Bias reduction in phase refinement by modified interference functions: introducing the gamma correction. , 1997, Acta crystallographica. Section D, Biological crystallography.

[14]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[15]  J. Bonifacino,et al.  Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains , 2002, Nature.

[16]  M Kokkinidis,et al.  Multidimensional molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[17]  J Navaza,et al.  Implementation of molecular replacement in AMoRe. , 2001, Acta crystallographica. Section D, Biological crystallography.

[18]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[19]  A T Brünger,et al.  Phase improvement by cross-validated density modification. , 1995, Acta crystallographica. Section D, Biological crystallography.

[20]  C. Carter,et al.  Entropy maximization constrained by solvent flatness: a new method for macromolecular phase extension and map improvement. , 1993, Acta crystallographica. Section D, Biological crystallography.

[21]  Alain Lifchitz,et al.  A translation function combining packing and diffraction information: an application to lysozyme (high-temperature form) , 1981 .

[22]  Randy J. Read,et al.  Experiences with a new translation-function program , 1987 .

[23]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[24]  Xiaodong Cheng,et al.  The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds , 2002, Nature Structural Biology.

[25]  A packing function for delimiting the allowable locations of crystallized macromolecules , 1976 .

[26]  G. Bricogne A Bayesian statistical theory of the phase problem. I. A multichannel maximum-entropy formalism for constructing generalized joint probability distributions of structure factors , 1988 .

[27]  Randy J. Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2001, Acta crystallographica. Section D, Biological crystallography.

[28]  T. Terwilliger Electronic Reprint Biological Crystallography Map-likelihood Phasing Biological Crystallography Map-likelihood Phasing , 2022 .

[29]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[30]  P D Adams,et al.  Patterson correlation methods: a review of molecular replacement with CNS. , 2001, Acta crystallographica. Section D, Biological crystallography.

[31]  K D Cowtan,et al.  Phase combination and cross validation in iterated density-modification calculations. , 1996, Acta crystallographica. Section D, Biological crystallography.

[32]  K Cowtan,et al.  General quadratic functions in real and reciprocal space and their application to likelihood phasing. , 2000, Acta crystallographica. Section D, Biological crystallography.

[33]  Electron-density histograms and the phase problem. , 1993 .

[34]  G. Bricogne [23] Bayesian statistical viewpoint on structure determination: Basic concepts and examples. , 1997, Methods in enzymology.

[35]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[36]  Ann M Stock,et al.  Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. , 2002, Structure.

[37]  J. Champoux,et al.  The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. , 2002, Structure.

[38]  G. Bricogne Maximum entropy and the foundations of direct methods , 1984 .