Choice of the Threshold Parameter in Wavelet Function Estimation

The procedures of Donoho, Johnstone, Kerkyacharian and Picard [DJKP] estimate functions by inverting thresholded wavelet transform coefficients of the data. The choice of threshold is crucial to the success of the method and is currently subject to an intense research effort. We describe how we have applied the statistical technique of cross-validation to choose a threshold and we present results that indicate that its performance for correlated data. Finally, to illustrate the techniques, we apply various wavelet-based estimation methods to some noisy one- and two-dimensional signals and display the results.

[1]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[2]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[3]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[4]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[5]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[6]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[7]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[11]  Peter Hall,et al.  Adaption to high spatial inhomogeneity based on wavelets and on local linear smoothing , 1993 .

[12]  Y. Meyer Wavelets and Operators , 1993 .

[13]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[14]  Michael H. Neumann,et al.  On the Efficiency of Wavelet Estimators under Arbitrary Error Distributions , 1994 .

[15]  Y. Wang Function estimation via wavelets for data with long-range dependence , 1994, Proceedings of 1994 Workshop on Information Theory and Statistics.

[16]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[17]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[18]  M. K. Kwong,et al.  W-matrices, nonorthogonal multiresolution analysis, and finite signals of arbitrary length , 1994 .

[19]  Guy P. Nason,et al.  Wavelet regression by cross-validation, , 1994 .

[20]  Kevin C. McGill,et al.  Algorithm 735: Wavelet transform algorithms for finite-duration discrete-time signals , 1994, TOMS.

[21]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[22]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[23]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[24]  Guy P. Nason,et al.  Wavelet function estimation using cross-validation , 1995 .

[25]  G. T. Warhola,et al.  DE-NOISING USING WAVELETS AND CROSS VALIDATION , 1995 .

[26]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[27]  Y. Benjamini,et al.  Adaptive thresholding of wavelet coefficients , 1996 .

[28]  E. Parzen,et al.  Data dependent wavelet thresholding in nonparametric regression with change-point applications , 1996 .

[29]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .