On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

We consider the semi-infinite system of polynomial inequalities of the form $$\begin{aligned} {{\mathbf {K}}}:=\{x\in {{\mathbb {R}}}^m\mid p(x,y)\ge 0,\quad \forall y\in S\subseteq {{\mathbb {R}}}^n\}, \end{aligned}$$ K : = { x ∈ R m ∣ p ( x , y ) ≥ 0 , ∀ y ∈ S ⊆ R n } , where p ( x ,  y ) is a real polynomial in the variables x and the parameters y , the index set S is a basic semialgebraic set in $${{\mathbb {R}}}^n$$ R n , $$-p(x,y)$$ - p ( x , y ) is convex in x for every $$y\in S$$ y ∈ S . We propose a procedure to construct approximate semidefinite representations of $${{\mathbf {K}}}$$ K . There are two indices to index these approximate semidefinite representations. As two indices increase, these semidefinite representation sets expand and contract, respectively, and can approximate $${{\mathbf {K}}}$$ K as closely as possible under some assumptions. In some special cases, we can fix one of the two indices or both. Then, we consider the optimization problem of minimizing a convex polynomial over $${{\mathbf {K}}}$$ K . We present an SDP relaxation method for this optimization problem by similar strategies used in constructing approximate semidefinite representations of $${{\mathbf {K}}}$$ K . Under certain assumptions, some approximate minimizers of the optimization problem can also be obtained from the SDP relaxations. In some special cases, we show that the SDP relaxation for the optimization problem is exact and all minimizers can be extracted.

[1]  V. Levin APPLICATION OF E. HELLY'S THEOREM TO CONVEX PROGRAMMING, PROBLEMS OF BEST APPROXIMATION AND RELATED QUESTIONS , 1969 .

[2]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[3]  Dimitri P. Bertsekas,et al.  Convex Optimization Theory , 2009 .

[4]  Markus Schweighofer,et al.  On the Exactness of Lasserre Relaxations for Compact Convex Basic Closed Semialgebraic Sets , 2017, SIAM J. Optim..

[5]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[6]  John N. Tsitsiklis,et al.  NP-hardness of deciding convexity of quartic polynomials and related problems , 2010, Math. Program..

[7]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[8]  Jean B. Lasserre,et al.  SOS approximations of nonnegative polynomials via simple high degree perturbations , 2005 .

[9]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[10]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[11]  Jean B. Lasserre,et al.  Convex sets with semidefinite representation , 2009, Math. Program..

[12]  Werner Krabs,et al.  Optimization and approximation , 1979 .

[13]  Miguel A. Goberna,et al.  Recent contributions to linear semi-infinite optimization , 2017, 4OR.

[14]  Didier Henrion,et al.  Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets , 2015, SIAM J. Optim..

[15]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[16]  Jean B. Lasserre,et al.  Tractable approximations of sets defined with quantifiers , 2014, Math. Program..

[17]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[18]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[19]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[20]  L. Qi,et al.  On solving a class of linear semi-infinite programming by SDP method , 2013 .

[21]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[22]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[23]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[24]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[25]  Berç Rustem,et al.  An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems , 2009 .

[26]  Christian Berg,et al.  Exponentially bounded positive definite functions , 1984 .

[27]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[28]  E. Haviland,et al.  On the Momentum Problem for Distribution Functions in More Than One Dimension. II , 1935 .

[29]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, 0812.2657.

[30]  Jiawang Nie,et al.  Discriminants and nonnegative polynomials , 2010, J. Symb. Comput..

[31]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[32]  Jean B. Lasserre,et al.  Convexity in SemiAlgebraic Geometry and Polynomial Optimization , 2008, SIAM J. Optim..

[33]  Amir Ali Ahmadi,et al.  A Complete Characterization of the Gap between Convexity and SOS-Convexity , 2011, SIAM J. Optim..

[34]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[35]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .

[36]  Jean Lasserre,et al.  An algorithm for semi-infinite polynomial optimization , 2011, 1101.4122.

[37]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[38]  B. Reznick,et al.  Polynomials that are positive on an interval , 2000 .

[39]  Claus Scheiderer,et al.  Spectrahedral Shadows , 2016, SIAM J. Appl. Algebra Geom..

[40]  Jean B. Lasserre,et al.  A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..

[41]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[42]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[43]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[44]  Jiawang Nie,et al.  An exact Jacobian SDP relaxation for polynomial optimization , 2010, Math. Program..

[45]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[46]  Li Wang,et al.  Semidefinite relaxations for semi-infinite polynomial programming , 2013, Comput. Optim. Appl..

[47]  Amir Ali Ahmadi,et al.  A convex polynomial that is not sos-convex , 2009, Mathematical Programming.

[48]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[49]  Lihong Zhi,et al.  Semidefinite Representations of Noncompact Convex Sets , 2015, SIAM J. Optim..

[50]  J. M. Borwein,et al.  Direct theorems in semi-infinite convex programming , 1981, Math. Program..

[51]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..