A coherent structure approach for parameter estimation in Lagrangian Data Assimilation

[1]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[2]  R. Pierrehumbert Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves , 1991 .

[3]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  P. Moral Nonlinear filtering : Interacting particle resolution , 1997 .

[6]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[7]  O. Junge,et al.  Almost Invariant Sets in Chua's Circuit , 1997 .

[8]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[9]  David M. Fratantoni,et al.  North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters , 2001 .

[10]  P. Poulain Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999 , 2001 .

[11]  Ira B Schwartz,et al.  Phase-space transport of stochastic chaos in population dynamics of virus spread. , 2002, Physical review letters.

[12]  G. Haller Lagrangian coherent structures from approximate velocity data , 2002 .

[13]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[14]  K. Ide,et al.  Lagrangian data assimilation for point vortex systems , 2002 .

[15]  Michael Dellnitz,et al.  Detecting and Locating Near-Optimal Almost-Invariant Sets and Cycles , 2002, SIAM J. Sci. Comput..

[16]  A. Mariano,et al.  Assimilation of drifter observations for the reconstruction of the Eulerian circulation field , 2003 .

[17]  S. DiMarco,et al.  A Statistical Description of the Velocity Fields from Upper Ocean Drifters in the Gulf of Mexico , 2013 .

[18]  S. Wiggins,et al.  Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach , 2006 .

[19]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[20]  Liyan Liu Lagrangian data assimilation into layered ocean model , 2007 .

[21]  T. Higuchi,et al.  Merging particle filter for sequential data assimilation , 2007 .

[22]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[23]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[24]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[25]  Andrew M. Stuart,et al.  A Bayesian approach to Lagrangian data assimilation , 2008 .

[26]  A. Budhiraja,et al.  Modified particle filter methods for assimilating Lagrangian data into a point-vortex model , 2008 .

[27]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[28]  J. Restrepo,et al.  The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation , 2009 .

[29]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[30]  G. Froyland,et al.  Optimally coherent sets in geophysical flows: a transfer-operator approach to delimiting the stratospheric polar vortex. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  G. Froyland,et al.  ows: A new approach to delimiting the stratospheric polar vortex , 2010 .

[32]  G. Froyland,et al.  Transport in time-dependent dynamical systems: finite-time coherent sets. , 2010, Chaos.

[33]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[34]  K. Dohan Measuring the Global Ocean Surface Circulation with Satellite and In Situ Observations , 2010 .

[35]  G. Froyland,et al.  Coherent sets for nonautonomous dynamical systems , 2009, 0911.0717.

[36]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[37]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[38]  G. Froyland,et al.  Three-dimensional characterization and tracking of an Agulhas Ring , 2012 .

[39]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[40]  P. Moral,et al.  On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.

[41]  A. Apte,et al.  The impact of nonlinearity in Lagrangian data assimilation , 2013 .

[42]  Erik M. Bollt,et al.  Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.

[43]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[44]  Chris Jones,et al.  Two-Stage Filtering for Joint State-Parameter Estimation , 2014, 1403.5989.

[45]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[46]  Elaine T. Spiller,et al.  A Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation , 2015 .

[47]  N. Santitissadeekorn,et al.  A bimodality trap in model projections. , 2015, Chaos.

[48]  Pierre Del Moral,et al.  Sequential Monte Carlo with Highly Informative Observations , 2014, SIAM/ASA J. Uncertain. Quantification.

[49]  Gary Froyland,et al.  A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. , 2015, Chaos.

[50]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[51]  J. Poterjoy A Localized Particle Filter for High-Dimensional Nonlinear Systems , 2016 .

[52]  Péter Koltai,et al.  Understanding the geometry of transport: Diffusion maps for Lagrangian trajectory data unravel coherent sets. , 2016, Chaos.