暂无分享,去创建一个
[1] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[2] Yiming Yang,et al. From Lasso regression to Feature vector machine , 2005, NIPS.
[3] Felipe Cucker,et al. Learning Theory: An Approximation Theory Viewpoint: Index , 2007 .
[4] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[5] Richard Weber,et al. Simultaneous feature selection and classification using kernel-penalized support vector machines , 2011, Inf. Sci..
[6] M. Nussbaum. Spline Smoothing in Regression Models and Asymptotic Efficiency in $L_2$ , 1985 .
[7] Genevera I. Allen. Automatic Feature Selection via Weighted Kernels and Regularization , 2013 .
[8] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[9] Lawrence K. Saul,et al. Kernel Methods for Deep Learning , 2009, NIPS.
[10] A. Sowmya,et al. The anisotropic Gaussian kernel for SVM classification of HRCT images of the lung , 2004, Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004..
[11] H. Triebel. Theory Of Function Spaces , 1983 .
[12] Bernhard Schölkopf,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.
[13] Sancho Salcedo-Sanz,et al. Evolutionary optimization of multi-parametric kernel $$\epsilon$$-SVMr for forecasting problems , 2013, Soft Comput..
[14] Ingo Steinwart,et al. Optimal regression rates for SVMs using Gaussian kernels , 2013 .
[15] G. Burton. Sobolev Spaces , 2013 .
[16] Vladimir Katkovnik,et al. Nonparametric density estimation with adaptive varying window size , 2001, SPIE Remote Sensing.
[17] Marc Hoffmann. Random rates in anisotropic regression , 2002 .
[18] H. Johnen,et al. On the equivalence of the K-functional and moduli of continuity and some applications , 1976, Constructive Theory of Functions of Several Variables.
[19] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[20] L. Birge,et al. On estimating a density using Hellinger distance and some other strange facts , 1986 .
[21] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[22] Peng-Lang Shui,et al. Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels , 2012, Pattern Recognit..
[23] Anisotropic Spaces I. (Interpolation of Abstract Spaces and Function Spaces) , 1976 .
[24] Yoshua. Bengio,et al. Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..
[25] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[26] Lorenzo Rosasco,et al. Deep Convolutional Networks are Hierarchical Kernel Machines , 2015, ArXiv.
[27] Debdeep Pati,et al. ANISOTROPIC FUNCTION ESTIMATION USING MULTI-BANDWIDTH GAUSSIAN PROCESSES. , 2011, Annals of statistics.
[28] Don R. Hush,et al. Optimal Rates for Regularized Least Squares Regression , 2009, COLT.
[29] M. Farooq,et al. An SVM-like approach for expectile regression , 2015, Comput. Stat. Data Anal..
[30] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.