Kinetic study on the UV‐induced photopolymerization of epoxy acrylate/TiO2 nanocomposites by FTIR spectroscopy

The kinetics of the photopolymerization of epoxy acrylate/TiO2 nanocomposites, with 2′2-dimethoxy-1,2-diphenylethan-1-one (Irgacure 651) or benzophenone/N-methyl diethanolamine as photoinitiators, were studied by FTIR spectroscopy. It was found that nanocomposites had a decreasing photopolymerization rates in comparison with pure epoxy acrylate. The photopolymerization rate of the nanocomposite could also be influenced by initiator types, oxygen, film thickness, irradiation intensity, dispersing media of TiO2 slurry, and so forth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3281–3287, 2006

[1]  Ursula Rammelt,et al.  Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide , 2003 .

[2]  L. Zan,et al.  A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation , 2004 .

[3]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[4]  Bai Yang,et al.  Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index , 2003 .

[5]  Xin Wang,et al.  Preparation and performance of high-impact polystyrene (HIPS)/nano-TiO2 nanocomposites , 2003 .

[6]  J. M. Wegner,et al.  Preparation of nano‐sized UV‐absorbing titanium‐oxo‐clusters via a photo‐curing ceramer process , 2005 .

[7]  Richard W. Siegel,et al.  Synthesis and mechanical properties of TiO2-epoxy nanocomposites , 1999 .

[8]  T. Gao,et al.  Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO2 nanocomposites , 2001 .

[9]  C. Grimes,et al.  Fabrication of nanoporous TiO2 films through Benard-Marangoni convection , 2002 .

[10]  R. Bogner,et al.  Techniques to monitor the UV curing of potential solvent-free film-coating polymers , 1995 .

[11]  Kazuaki Yoshida,et al.  Patterning of hybrid titania film using photopolymerization , 2004 .

[12]  S. Nunes,et al.  Hybrid films of poly(ethylene oxide-b-amide-6) containing sol–gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability , 2000 .

[13]  Byung Duk Yang,et al.  Dispersion effect of nanoparticles on the conjugated polymer–inorganic nanocomposites , 2004 .

[14]  Byung Duk Yang,et al.  Effect of nanoparticles on the conjugated polymer in the PPV/TiO2 nanocomposites , 2004 .

[15]  Chin-San Wu Synthesis of polyethylene‐octene elastomer/SiO2‐TiO2 nanocomposites via in situ polymerization: Properties and characterization of the hybrid , 2005 .

[16]  S. Uchida,et al.  Synthesis and photocatalytic properties of HTaWO6/(Pt,TiO2) and HTaWO6/(Pt,Fe2O3) nanocomposites , 1999 .

[17]  Elie Paillard,et al.  Aerosol–gel deposition of photocurable ORMOSIL films doped with a terbium complex , 2004 .

[18]  Noriyuki Kuramoto,et al.  Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity , 2000 .

[19]  B. You,et al.  Preparation and characterization of ultraviolet‐curable nanocomposite coatings initiated by benzophenone/n‐methyl diethanolamine , 2005 .

[20]  B. You,et al.  Effect of preparation of titania sol on the structure and properties of acrylic resin/titania hybrid materials , 2004 .

[21]  Christian Decker,et al.  Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II , 2003 .

[22]  M. Waterland,et al.  Photocatalytic titania coatings , 2004 .

[23]  A. Tinnemans,et al.  Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol–gel method , 2004 .

[24]  Norman S. Allen,et al.  Photoinitiators for UV and visible curing of coatings: Mechanisms and properties , 1996 .

[25]  B. You,et al.  Trialkoxysilane‐capped acrylic resin/titania organic–inorganic hybrid optical films prepared by the sol–gel process , 2005 .

[26]  D. Macfarlane,et al.  Conductivity in amorphous polyether nanocomposite materials , 1999 .

[27]  Nobuo Ogata,et al.  Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol–gel process , 2004 .

[28]  Walter Caseri,et al.  Polymer‐TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials , 2003 .

[29]  Correlation of morphology and device performance in inorganic–organic TiO2–polythiophene hybrid solid-state solar cells , 2004 .

[30]  M. Ding,et al.  Preparation and characteristics of polyimide-TiO2 nanocomposite film , 2000 .

[31]  Andrew Mills,et al.  Light-driven oxygen scavenging by titania/polymer nanocomposite films , 2004 .

[32]  B. You,et al.  Study on acrylic resin/titania organic–inorganic hybrid materials prepared by the sol–gel process , 2004 .

[33]  Jinrong Yang,et al.  Study on polyimide/TiO2 nanocomposite membranes for gas separation , 2002 .

[34]  A. Shukla,et al.  Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites , 2003 .

[35]  Qian-shu Li,et al.  Study on the optical properties of PPV/TiO2 nanocomposites , 2001 .

[36]  S. Ray,et al.  Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide , 2004 .

[37]  Christian Decker,et al.  The use of UV irradiation in polymerization , 1998 .

[38]  H. Imai,et al.  Alternative modification methods for sol–gel coatings of silica, titania and silica–titania using ultraviolet irradiation and water vapor , 1999 .

[39]  Deok‐Ho Kim,et al.  Scratch Resistant and Transparent UV-Protective Coating on Polycarbonate , 2003 .

[40]  Bing Wang,et al.  Sol–gel derived organic–inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties , 2004 .

[41]  Jihuai Wu,et al.  Synthesis of HTaWO6/(Pt, TiO2) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction , 2002 .