Thermalization, Error-Correction, and Memory Lifetime for Ising Anyon Systems

We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair-creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range between 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.

[1]  Jeongwan Haah,et al.  Quantum self-correction in the 3D cubic code model. , 2011, Physical review letters.

[2]  Frank Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996 .

[3]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[4]  James R. Wootton A Simple Decoder for Topological Codes , 2013, Entropy.

[5]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[6]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[7]  Maissam Barkeshli,et al.  Classification of Topological Defects in Abelian Topological States , 2013, 1304.7579.

[8]  M. Freedman,et al.  Towards universal topological quantum computation in the ν = 5 2 fractional quantum Hall state , 2005, cond-mat/0512066.

[9]  S. Tewari,et al.  Topological degeneracy of non-Abelian states for dummies , 2006, cond-mat/0607743.

[10]  Reinhard F. Werner,et al.  Implementation of Clifford gates in the Ising-anyon topological quantum computer , 2008, 0812.2338.

[11]  Demosthenes Ellinas,et al.  Anyonic quantum walks , 2009, 0910.2974.

[12]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[13]  David Poulin,et al.  Characterizing the structure of preserved information in quantum processes. , 2007, Physical review letters.

[14]  Greg Kuperberg,et al.  Quantum computation with Turaev–Viro codes , 2010, 1002.2816.

[15]  N. E. Bonesteel,et al.  Quantum circuits for measuring Levin-Wen operators , 2012, 1206.6048.

[16]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[17]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[18]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[19]  M. B. Hastings,et al.  A Short Proof of Stability of Topological Order under Local Perturbations , 2010, 1001.4363.

[20]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[21]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[22]  Maarten Van den Nest,et al.  Efficient classical simulations of quantum fourier transforms and normalizer circuits over Abelian groups , 2012, Quantum Inf. Comput..

[23]  J. Birman On braid groups , 1969 .

[24]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[25]  Gavin K Brennen,et al.  Quantum walks with non-Abelian anyons. , 2011, Physical review letters.

[26]  J. Pachos,et al.  Transport properties of anyons in random topological environments , 2012, 1207.5000.

[27]  S. Simon,et al.  Three- and four-body interactions from two-body interactions in spin models: A route to Abelian and non-Abelian fractional Chern insulators , 2013, 1307.3485.

[28]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[29]  R. Raussendorf,et al.  Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.

[30]  John Preskill,et al.  Logical-operator tradeoff for local quantum codes , 2010, 1011.3529.

[31]  Matthew B Hastings,et al.  Self-correcting quantum memories beyond the percolation threshold. , 2014, Physical review letters.

[32]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[33]  J. Pachos,et al.  Non-Abelian Chern-Simons Theory from a Hubbard-like Model , 2013, 1311.2871.

[34]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[35]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[36]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[37]  Frank Wilczek,et al.  Fractional statistics and anyon superconductivity , 1990 .

[38]  Quantum Walks of SU(2)_k Anyons on a Ladder , 2012, 1203.1999.

[39]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[40]  David Poulin,et al.  Local topological order inhibits thermal stability in 2D. , 2012, Physical review letters.

[41]  Tsui,et al.  Observation of an even-denominator quantum number in the fractional quantum Hall effect. , 1987, Physical review letters.

[42]  Einarsson,et al.  Fractional statistics on a torus. , 1990, Physical review letters.

[43]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[44]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[45]  Austin G. Fowler,et al.  Graphical algorithms and threshold error rates for the 2d color code , 2009, Quantum Inf. Comput..

[46]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[47]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[48]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[49]  Juan Bermejo-Vega,et al.  A Gottesman-Knill theorem for all finite Abelian groups , 2012, ArXiv.

[50]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[51]  David Poulin,et al.  A renormalization group decoding algorithm for topological quantum codes , 2010, 2010 IEEE Information Theory Workshop.

[52]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[53]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[54]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[55]  R. Pfeifer,et al.  Translation invariance, topology, and protection of criticality in chains of interacting anyons , 2010, 1005.5486.

[56]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[57]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[58]  Juan Bermejo-Vega,et al.  Classical simulations of Abelian-group normalizer circuits with intermediate measurements , 2012, Quantum Inf. Comput..

[59]  Michael Levin,et al.  Protected edge modes without symmetry , 2013, 1301.7355.

[60]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.

[61]  J. Ignacio Cirac,et al.  Limitations of passive protection of quantum information , 2009, Quantum Inf. Comput..

[62]  A. G. Fowler,et al.  Threshold error rates for the toric and surface codes , 2009, 0905.0531.

[63]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[64]  H. D. Garis,et al.  Braid matrices and quantum gates for Ising anyons topological quantum computation , 2010, 1003.1253.