Efficient creation and convergence of surface slabs

Abstract The supercell slab is the structural model used in first-principles simulations to determine thermodynamic, kinetic, and electronic properties of surfaces and interfaces. We present a general algorithm to reorient bulk unit cells using basis and covariant transformations — the first step for constructing surface slabs of any Miller index from bulk unit cells of any Bravais lattice. We further review and discuss subtleties of surface slab creation relevant for performing efficient and accurate calculations of surface properties. We also demonstrate that the nonconvergence of surface energy with respect to slab thickness can be mitigated if the bulk reference energy is calculated from a surface-oriented bulk unit cell, which eliminates Brillouin zone integration errors between the slab and the bulk. Using Pt(111) and Si(111) surfaces as examples, this technique converges the surface energy with respect to slab thickness requiring only one bulk and one relatively thin slab calculation, with moderate k- point densities. This process is about an order of magnitude more efficient than popular surface energy convergence techniques involving multiple slab calculations.

[1]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[2]  W. Kohn,et al.  Theory of Metal Surfaces: Work Function , 1971 .

[3]  L. Wallden,et al.  Low-energy electron diffraction from Cu(111): Subthreshold effect and energy-dependent inner potential; surface relaxation and metric distances between spectra , 1984 .

[4]  F. Trani,et al.  The rutile TiO2 (110) surface: obtaining converged structural properties from first-principles calculations. , 2006, The Journal of chemical physics.

[5]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[6]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[7]  A. Mighell,et al.  Determination of reduced cells , 1970 .

[8]  J. Maier,et al.  First-principles calculations for SrTiO3(100) surface structure , 2002 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  R. H. Wagoner,et al.  Summary Abstract: Surface energies in d‐band metals , 1984 .

[11]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[12]  A. Kiejna,et al.  Quantum-size effect in thin Al(110) slabs , 1999 .

[13]  S. Curtarolo,et al.  Ab initio insights on the shapes of platinum nanocatalysts. , 2011, ACS nano.

[14]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[15]  M. Hove,et al.  MgO(100) surface relaxation by symmetrized automated tensor low energy electron diffraction analysis , 1998 .

[16]  Larson,et al.  Ab initio theory of the Si(111)-(7 x 7) surface reconstruction: A challenge for massively parallel computation. , 1992, Physical review letters.

[17]  Scheffler,et al.  GaAs equilibrium crystal shape from first principles. , 1996, Physical review. B, Condensed matter.

[18]  Gabor A. Somorjai,et al.  Impact of surface chemistry , 2010, Proceedings of the National Academy of Sciences.

[19]  T. Wüst,et al.  Can Mono Domain Polar Molecular Crystals Exist , 2012 .

[20]  Effect of the environment on alpha-Al2O3 (0001) surface structures , 2000, Physical review letters.

[21]  M. Chou,et al.  Theory of quantum size effects in thin Pb(111) films , 2002 .

[22]  G. P. Srivastava Theory of semiconductor surface reconstruction , 1997 .

[23]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[24]  C. V. Ciobanu,et al.  Finding the reconstructions of semiconductor surfaces via a genetic algorithm [rapid communication] , 2004 .

[25]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[26]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[27]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[28]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[29]  K. Pandey Theory of semiconductor surface reconstruction: Si(111)-7×7, Si(111)-2×1, and GaAs(110) , 1983 .

[30]  E. Parthé,et al.  The standardization of inorganic crystal-structure data , 1984 .

[31]  V. Fiorentini,et al.  Extracting convergent surface energies from slab calculations , 1996 .

[32]  J. Boettger,et al.  Nonconvergence of surface energies obtained from thin-film calculations. , 1994, Physical review. B, Condensed matter.

[33]  M. Lazzeri,et al.  Stress-driven reconstruction of an oxide surface: the anatase TiO(2)(001)-(1 x 4) surface. , 2001, Physical review letters.

[34]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[35]  Olga Dulub,et al.  Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. , 2003, Physical review letters.

[36]  E. Kaxiras,et al.  Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends. , 2010, Nano letters.

[37]  Jacobsen,et al.  Theory of alkali-metal-induced reconstruction of fcc (110) surfaces. , 1988, Physical review letters.

[38]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[39]  R. Needs,et al.  Theory of surface stress and surface reconstruction , 1991 .

[40]  Scheffler,et al.  Reconstruction mechanism of fcc transition metal (001) surfaces. , 1993, Physical review letters.

[41]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Scheffler,et al.  Converged properties of clean metal surfaces by all-electron first-principles calculations , 2006 .

[43]  M. Bäumer,et al.  Hydroxy1 driven reconstruction of the polar NiO(111) surface , 1994 .

[44]  D. Chadi,et al.  Atomic and Electronic Structures of Reconstructed Si(100) Surfaces , 1979 .

[45]  C. Noguera,et al.  Polar oxide surfaces , 2000 .

[46]  M. Gillan,et al.  Structure of the (0001) surface of α-Al2O3 from first principles calculations , 1993 .

[47]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[48]  John T Yates,et al.  Surface chemistry: Key to control and advance myriad technologies , 2011, Proceedings of the National Academy of Sciences.

[49]  D. Sánchez-Portal,et al.  Time-dependent electron phenomena at surfaces , 2010, Proceedings of the National Academy of Sciences.

[50]  Andrew L. Rohl,et al.  GDIS: a visualization program for molecular and periodic systems , 2005 .

[51]  Stephen C. Parker,et al.  Atomistic simulation of dislocations, surfaces and interfaces in MgO , 1996 .