Stochastic Calculus of Looping Sequences for the Modelling and Simulation of Cellular Pathways

The paper presents the Stochastic Calculus of Looping Sequences (SCLS) suitable to describe microbiological systems, such as cellular pathways, and their evolution. Systems are represented by terms. The terms of the calculus are constructed by basic constituent elements and operators of sequencing, looping, containment and parallel composition. The looping operator allows tying up the ends of a sequence, thus creating a circular sequence which can represent a membrane. The evolution of a term is modelled by a set of rewrite rules enriched with stochastic rates representing the speed of the activities described by the rules, and can be simulated automatically. As applications, we give SCLS representations of the regulation process of the lactose operon in Escherichia coli and of the quorum sensing in Pseudomonas aeruginosa . A prototype simulator (SCLSm) has been implemented in F# and used to run the experiments. A public version of the tool is available at the url: http://www.di.unipi.it/~milazzo/biosims/ .

[1]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[2]  Vincent Danos,et al.  Scalable Simulation of Cellular Signaling Networks , 2007, APLAS.

[3]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[4]  Luca Cardelli,et al.  Brane Calculi Interactions of Biological Membranes , 2004 .

[5]  J. Keener,et al.  A mathematical model for quorum sensing in Pseudomonas aeruginosa , 2001, Bulletin of mathematical biology.

[6]  Paolo Milazzo,et al.  The Calculus of Looping Sequences , 2008, SFM.

[7]  Robin Milner,et al.  Stochastic Bigraphs , 2008, MFPS.

[8]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .

[9]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[10]  Vincent Danos,et al.  Modeling and querying biomolecular interaction networks , 2004, Theor. Comput. Sci..

[11]  P. Williams,et al.  Early development and quorum sensing in bacterial biofilms , 2003, Journal of mathematical biology.

[12]  Paolo Milazzo,et al.  A Calculus of Looping Sequences for Modelling Microbiological Systems , 2006, Fundam. Informaticae.

[13]  Calin Belta,et al.  Hybrid Modeling and Simulation of Biomolecular Networks , 2001, HSCC.

[14]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[15]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[16]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[17]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[18]  Paolo Milazzo,et al.  Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level , 2007, ISBRA.

[19]  Paolo Milazzo,et al.  Bisimulations in calculi modelling membranes , 2008, Formal Aspects of Computing.

[20]  H Matsuno,et al.  Hybrid Petri net representation of gene regulatory network. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[21]  Paolo Milazzo,et al.  Bisimulation Congruences in the Calculus of Looping Sequences , 2006, ICTAC.

[22]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[23]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[24]  Ehud Shapiro,et al.  Cells as Computation , 2003, CMSB.

[25]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[26]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[27]  S. Kjelleberg,et al.  Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation. , 2000, Journal of molecular biology.

[28]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[29]  Corrado Priami,et al.  Modelling biochemical pathways through enhanced pi-calculus , 2004, Theor. Comput. Sci..

[30]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[31]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[32]  Mario de Jesús Pérez Jiménez,et al.  Modelling Vibrio fischeri’s behaviour Using P Systems , 2005 .

[33]  P. Milazzo,et al.  Qualitative and Quantitative Formal Modeling of Biological Systems , 2007 .

[34]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[35]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[36]  B. Iglewski,et al.  Cell-to-cell signaling and Pseudomonas aeruginosa infections. , 1998, Emerging infectious diseases.

[37]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.