Recent technological advancements related to articular cartilage regeneration

Some treatments for full thickness defects of the articular cartilage, such as the transplantation of cultured chondrocytes have already been performed. However, in order to overcome osteoarthritis, we must further study the partial thickness defects of articular cartilage. It is much more difficult to repair a partial thickness defect because few repair cells can address such injured sites. We herein show that bioengineered and layered chondrocyte sheets using temperature-responsive culture dishes may be a potentially useful treatment for the repair of partial thickness defects. We also show that a chondrocyte-plate using a rotational culture system without the use of a scaffold may also be useful as a core cartilage of an articular cartilageous defect. We evaluated the properties of these sheets and plates using histological findings, scanning electrical microscopy, and photoacoustic measurement methods, which we developed to evaluate the biomechanical properties of tissue-engineered cartilage. In conclusion, the layered chondrocyte sheets and chondrocyte-plates were able to maintain the cartilageous phenotype, thus suggesting that they could be a new and potentially effective therapeutic product when attached to the sites of cartilage defects.

[1]  T. Okano,et al.  Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. , 2004, The New England journal of medicine.

[2]  T. Okano,et al.  A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). , 1993, Journal of biomedical materials research.

[3]  S W O'Driscoll,et al.  The Repair of Major Osteochondral Defects in Joint Surfaces by Neochondrogenesis with Autogenous Osteoperiosteal Grafts Stimulated by Continuous Passive Motion: An Experimental Investigation in the Rabbit , 1986, Clinical orthopaedics and related research.

[4]  M. Saito,et al.  Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. , 2002, Osteoarthritis and cartilage.

[5]  Jos Vander Sloten,et al.  Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds , 2006, Medical and Biological Engineering and Computing.

[6]  Miya Ishihara,et al.  Osteogenic Potential of Human Adipose Tissue-Derived Stromal Cells as an Alternative Stem Cell Source , 2004, Cells Tissues Organs.

[7]  M. Ishihara,et al.  An Experimental Study of the Regeneration of the Intervertebral Disc With an Allograft of Cultured Annulus Fibrosus Cells Using a Tissue-Engineering Method , 2003, Spine.

[8]  T. Okano,et al.  Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. , 1998, Journal of biomaterials science. Polymer edition.

[9]  P. Mainil-Varlet,et al.  A static, closed and scaffold-free bioreactor system that permits chondrogenesis in vitro. , 2003, Osteoarthritis and cartilage.

[10]  T. Okano,et al.  Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. , 2000, Biomacromolecules.

[11]  Miya Ishihara,et al.  Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[12]  Masayuki Yamato,et al.  Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. , 2002, Journal of biomedical materials research.

[13]  Vilmos Vécsei,et al.  Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. , 2003, Tissue engineering.

[14]  Mitsuo Umezu,et al.  Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces , 2002, Circulation research.

[15]  C. Ohlsson,et al.  Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. , 1994, The New England journal of medicine.

[16]  Bonpei Takase,et al.  Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  T. Okano,et al.  Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. , 2001, Tissue engineering.

[18]  T. Okano,et al.  Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. , 2000, Journal of biomedical materials research.

[19]  K. Kawasaki,et al.  Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. , 2002, The Journal of bone and joint surgery. British volume.

[20]  Miya Ishihara,et al.  Tissue engineering of articular cartilage using an allograft of cultured chondrocytes in a membrane-sealed atelocollagen honeycomb-shaped scaffold (ACHMS scaffold). , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[21]  Junzo Tanaka,et al.  Rapid and Large-Scale Formation of Chondrocyte Aggregates by Rotational Culture , 2003, Cell transplantation.

[22]  Miya Ishihara,et al.  Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[23]  T. Yamamuro,et al.  Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. , 1993, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[24]  T. Okano,et al.  Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. , 1995, Biomaterials.

[25]  M. Ishihara,et al.  An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. , 2003, Journal of biomedical materials research. Part A.

[26]  R P Jakob,et al.  Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. , 2001, Osteoarthritis and cartilage.

[27]  Miya Ishihara,et al.  Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method , 2006, Lasers in surgery and medicine.

[28]  M. Ishihara,et al.  Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycombshaped scaffold with a membrane seal (ACHMS scaffold) , 2003, Medical and Biological Engineering and Computing.

[29]  Miya Ishihara,et al.  Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. , 2006, Biochemical and biophysical research communications.

[30]  Miya Ishihara,et al.  Usefulness of photoacoustic measurements for evaluation of biomechanical properties of tissue-engineered cartilage. , 2005, Tissue engineering.