Quantization for an elliptic equation of order 2m with critical exponential non-linearity

[1]  L. Martinazzi,et al.  Asymptotics and Quantization for a Mean-Field Equation of Higher Order , 2009, 0904.3290.

[2]  F. Robert,et al.  The heat flow with a critical exponential nonlinearity , 2009, 0902.4409.

[3]  L. Martinazzi A threshold phenomenon for embeddings of $${H^m_0}$$ into Orlicz spaces , 2009, 0902.3398.

[4]  L. Martinazzi Classification of solutions to the higher order Liouville’s equation on $${\mathbb{R}^{2m}}$$ , 2008, 0801.2729.

[5]  Juncheng Wei,et al.  Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition , 2007, 0706.0615.

[6]  M. Struwe Quantization for a fourth order equation with critical exponential growth , 2007 .

[7]  Adimurthi,et al.  CONCENTRATION PHENOMENA FOR LIOUVILLE'S EQUATION IN DIMENSION FOUR , 2006 .

[8]  Olivier Druet Multibumps analysis in dimension $2$: Quantification of blow-up levels , 2006 .

[9]  Adimurthi,et al.  Blow-up Analysis in Dimension 2 and a Sharp Form of Trudinger–Moser Inequality , 2005 .

[10]  F. Robert,et al.  Asymptotic Profile for a Fourth Order PDE with Critical Exponential Growth in Dimension Four , 2004 .

[11]  Sun-Yung Alice Chang,et al.  Non-Linear Elliptic Equations in Conformal Geometry , 2004 .

[12]  Adimurthi,et al.  Global Compactness Properties of Semilinear Elliptic Equations with Critical Exponential Growth , 2000 .

[13]  Juncheng Wei,et al.  Asymptotic behavior of a nonlinear fourth order eigenvalue problem , 1996 .

[14]  L. Martinazzi,et al.  Classification of solutions to the higher order Liouville ’ s equation on R 2 m , 2009 .

[15]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .