Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons.

The manipulation of radiative properties of light emitters coupled with surface plasmons is important for engineering new nanoscale optoelectronic devices, including lasers, detectors and single photon emitters. However, so far the radiative rates of excited states in semiconductors and molecular systems have been enhanced only moderately, typically by a factor of 10-50, producing emission mostly from thermalized excitons. Here, we show the generation of dominant hot-exciton emission, that is, luminescence from non-thermalized excitons that are enhanced by the highly concentrated electromagnetic fields supported by the resonant whispering-gallery plasmonic nanocavities of CdS-SiO(2)-Ag core-shell nanowire devices. By tuning the plasmonic cavity size to match the whispering-gallery resonances, an almost complete transition from thermalized exciton to hot-exciton emission can be achieved, which reflects exceptionally high radiative rate enhancement of >10(3) and sub-picosecond lifetimes. Core-shell plasmonic nanowires are an ideal test bed for studying and controlling strong plasmon-exciton interaction at the nanoscale and opens new avenues for applications in ultrafast nanophotonic devices.

[1]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[2]  D. G. Thomas,et al.  Exciton Spectrum of Cadmium Sulfide , 1959 .

[3]  S. Permogorov Hot excitons in semiconductors , 1975 .

[4]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[5]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[6]  J. Birman,et al.  Lattice Dynamics of Wurtzite: CdS. II , 1970 .

[7]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[8]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[9]  R. Agarwal,et al.  Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities. , 2011, The journal of physical chemistry. A.

[10]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[11]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[12]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[13]  Graham R. Fleming,et al.  Chemical applications of ultrafast spectroscopy , 1986 .

[14]  Y. Morozenko,et al.  Hot-exciton luminescence in CdSe crystals , 1973 .

[15]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[16]  Charles M. Lieber,et al.  Semiconductor nanowires: optics and optoelectronics , 2006 .

[17]  Vic Gammon CDs , 2003 .

[18]  Yang,et al.  Hot electron relaxation in GaAs quantum wells. , 1985, Physical review letters.

[19]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[20]  U. Heim,et al.  Dynamics of exciton-polariton recombination in CdS , 1975 .

[21]  Kobayashi,et al.  Hot-exciton luminescence in ZnTe/MnTe quantum wells. , 1990, Physical review. B, Condensed matter.

[22]  Rui Zhang,et al.  Generation of molecular hot electroluminescence by resonant nanocavity plasmons , 2010 .

[23]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[24]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[25]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[26]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[27]  M. Artemyev,et al.  Exciton-plasmon-photon conversion in plasmonic nanostructures. , 2007, Physical review letters.

[28]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[29]  S. Permogorov,et al.  Hot excitons and exciton excitation spectra , 1970 .

[30]  J. Birman,et al.  Lattice Dynamics of Wurtzite: CdS , 1967 .

[31]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[32]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.