Moir\'e Synergy: An Emerging Game Changer by Moir\'e of Moir\'e

Moir\'e superlattices of tunable wavelengths and the further developed moir\'e of moir\'e systems, by artificially assembling two-dimensional (2D) van der Waals (vdW) materials as designed, have brought up a versatile toolbox to explore fascinating condensed mater physics and their stimulating physicochemical functionalities. In this Perspective, we briefly review the recent progress in the emerging field of moir\'e synergy, highlighting the synergetic effects arising in distinct dual moir\'e heterostructures of graphene and transition metal dichalcogenides (TMDCs). A spectrum of moir\'e of moir\'e configurations, the advanced characterization and the exploitation efforts on the moir\'e-moir\'e interactions will be discussed. Finally, we look out for urgent challenges to be conquered in the community and some potential research directions in the near future.

[1]  A. Pan,et al.  Strong Interlayer Coupling in Twisted Transition Metal Dichalcogenide Moiré Superlattices , 2023, Advanced materials.

[2]  L. You,et al.  Towards two-dimensional van der Waals ferroelectrics , 2023, Nature Materials.

[3]  E. Pop,et al.  Approaching the quantum limit in two-dimensional semiconductor contacts , 2023, Nature.

[4]  J. Shan,et al.  Exciton density waves in Coulomb-coupled dual moiré lattices , 2022, Nature Materials.

[5]  S. Lau,et al.  Phase-controllable large-area two-dimensional In_2Se_3 and ferroelectric heterophase junction , 2022, Nature Nanotechnology.

[6]  G. Wang,et al.  The trilayer exciton emission in WSe2/WS2/MoS2 van der Waals heterostructures , 2022, Applied Physics Letters.

[7]  G. Refael,et al.  Promotion of superconductivity in magic-angle graphene multilayers , 2022, Science.

[8]  Yeliang Wang,et al.  Heterodimensional superlattice with in-plane anomalous Hall effect , 2022, Nature.

[9]  Ajit K. Srivastava,et al.  Quadrupolar excitons in a tunnel-coupled van der Waals heterotrilayer , 2022, 2208.05490.

[10]  Zenghui Wang,et al.  Interlayer Coupling: An Additional Degree of Freedom in Two-Dimensional Materials. , 2022, ACS nano.

[11]  Y. Li,et al.  P-type electrical contacts for 2D transition-metal dichalcogenides , 2022, Nature.

[12]  Mit H. Naik,et al.  Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe , 2022, Science.

[13]  J. Shan,et al.  Semiconductor moiré materials , 2022, Nature Nanotechnology.

[14]  L. Kronik,et al.  Cumulative polarization in conductive interfacial ferroelectrics. , 2022, Nature.

[15]  Yeliang Wang,et al.  Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides , 2022, Nature Materials.

[16]  Cheng Chen,et al.  Observation of Γ -Valley Moiré Bands and Emergent Hexagonal Lattice in Twisted Transition Metal Dichalcogenides , 2022, Physical Review X.

[17]  S. Lau,et al.  Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides , 2022, Science.

[18]  Xinran Wang,et al.  Symmetry Breaking and Anomalous Conductivity in a Double-Moiré Superlattice. , 2022, Nano letters.

[19]  Ya-hui Zhang,et al.  Doping a Mott insulator with excitons in a moiré bilayer: Fractional superfluid, neutral Fermi surface, and Mott transition , 2022, Physical Review B.

[20]  Kenji Watanabe,et al.  Dirac spectroscopy of strongly correlated phases in twisted trilayer graphene , 2022, Nature Materials.

[21]  E. Kaxiras,et al.  Orderly disorder in magic-angle twisted trilayer graphene , 2022, Science.

[22]  C. Coletti,et al.  Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene , 2022, Nano letters.

[23]  Xiaodong Xu,et al.  Light-induced ferromagnetism in moiré superlattices , 2022, Nature.

[24]  A. Bostwick,et al.  Strong interlayer interactions in bilayer and trilayer moiré superlattices , 2022, Science advances.

[25]  Xiaoqin Li,et al.  Excitons in semiconductor moiré superlattices , 2022, Nature Nanotechnology.

[26]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[27]  D. Pan,et al.  Bridging the gap between atomically thin semiconductors and metal leads , 2021, Nature Communications.

[28]  C. Mora,et al.  Moir´e-of-moir´e low-energy effective theory of twisted trilayer graphene , 2022 .

[29]  D. Halbertal,et al.  Multi-layered atomic relaxation in van der Waals heterostructures , 2022 .

[30]  Luka M. Devenica,et al.  Local Sensing of Correlated Electrons in Dual-moir\'e Heterostructures using Dipolar Excitons , 2021, 2111.09440.

[31]  E. Kaxiras,et al.  Correlated Insulating States and Transport Signature of Superconductivity in Twisted Trilayer Graphene Superlattices. , 2021, Physical review letters.

[32]  D. Muller,et al.  Extremely anisotropic van der Waals thermal conductors , 2021, Nature.

[33]  Xiaoqing Pan,et al.  Layer-dependent interface reconstruction and strain modulation in twisted WSe2. , 2021, Nanoscale.

[34]  J. Bokor,et al.  Ultralow contact resistance between semimetal and monolayer semiconductors , 2021, Nature.

[35]  Jihoon Jeong,et al.  Moiré Patterns in 2D Materials: A Review. , 2021, ACS nano.

[36]  A. Vishwanath,et al.  SU(4) Chiral Spin Liquid, Exciton Supersolid, and Electric Detection in Moiré Bilayers. , 2021, Physical review letters.

[37]  K. T. Law,et al.  Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2 , 2021, Nature Communications.

[38]  A. MacDonald,et al.  The marvels of moiré materials , 2021, Nature Reviews Materials.

[39]  A. M. van der Zande,et al.  Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS2 Devices , 2021, ACS omega.

[40]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[41]  Kenji Watanabe,et al.  Anisotropic band flattening in graphene with one-dimensional superlattices , 2020, Nature Nanotechnology.

[42]  K. Novoselov,et al.  In situ manipulation of van der Waals heterostructures for twistronics , 2020, Science Advances.

[43]  Q. Wang,et al.  Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method , 2020 .

[44]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[45]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[46]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[47]  Xiaoqing Pan,et al.  General synthesis of two-dimensional van der Waals heterostructure arrays , 2020, Nature.

[48]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[49]  T. Taniguchi,et al.  Mapping the twist-angle disorder and Landau levels in magic-angle graphene , 2019, Nature.

[50]  Lei Yin,et al.  Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures , 2019, Advanced materials.

[51]  C. Dwyer,et al.  Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity , 2019, Chemistry of Materials.

[52]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[53]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[54]  E. Kaxiras,et al.  Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene , 2018, Nature Materials.

[55]  Kenji Watanabe,et al.  Twistable electronics with dynamically rotatable heterostructures , 2018, Science.

[56]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[57]  T. Taniguchi,et al.  Cleaning interfaces in layered materials heterostructures , 2018, Nature Communications.

[58]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[59]  P. Kim,et al.  Band structure engineering of 2D materials using patterned dielectric superlattices , 2017, Nature Nanotechnology.

[60]  A. Kis,et al.  Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure. , 2017, Nano letters.

[61]  P. Kim,et al.  Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. , 2017, Nano letters.

[62]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[63]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[64]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[65]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[66]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[67]  A. Reina,et al.  Observation of Van Hove singularities in twisted graphene layers , 2009, 0912.2102.

[68]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.