Robust preconditioning for coupled Stokes-Darcy problems with the Darcy problem in primal form

The coupled Darcy-Stokes problem is widely used for modeling fluid transport in physical systems consisting of a porous part and a free part. In this work we consider preconditioners for monolitic solution algorithms of the coupled Darcy-Stokes problem, where the Darcy problem is in primal form. We employ the operator preconditioning framework and utilize a fractional solver at the interface between the problems to obtain order optimal schemes that are robust with respect to the material parameters, i.e. the permeability, viscosity and Beavers-Joseph-Saffman parameter. Our approach is similar to our earlier work, but since the Darcy problem is in primal form, the mass conservation at the interface introduces some challenges. These challenges will be specifically addressed in this paper. Numerical experiments illustrating the performance are provided. The preconditioner is posed in non-standard Sobolev spaces which may be perceived as an obstacle for its use in applications. However, we detail the implementational aspects and show that the preconditioner is quite feasible to realize in practice.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[3]  Miroslav Kuchta,et al.  Assembly of multiscale linear PDE operators , 2019, ENUMATH.

[4]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[5]  Jinchao Xu,et al.  Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications , 2009, J. Comput. Appl. Math..

[6]  Xiaoping,et al.  LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS , 2009 .

[7]  Kent-André Mardal,et al.  Multigrid Methods for Discrete Fractional Sobolev Spaces , 2018, SIAM J. Sci. Comput..

[8]  J. Zeman,et al.  Localization analysis of an energy-based fourth-order gradient plasticity model , 2015, 1501.06788.

[9]  Miroslav Kuchta,et al.  Robust preconditioning of monolithically coupled multiphysics problems , 2020, ArXiv.

[10]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[11]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[12]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[13]  Johannes Kraus,et al.  Uniformly Stable Discontinuous Galerkin Discretization and Robust Iterative Solution Methods for the Brinkman Problem , 2016, SIAM J. Numer. Anal..

[14]  M. Feng,et al.  Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem , 2010 .

[15]  A. Quarteroni,et al.  Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations , 2003 .

[16]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[17]  Xue-Cheng Tai,et al.  A robust nonconforming H2-element , 2001, Math. Comput..

[18]  G. Gatica,et al.  A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .

[19]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[20]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[21]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[22]  A. Quarteroni,et al.  Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .

[23]  Ludmil T. Zikatanov,et al.  A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations , 2016, Numerische Mathematik.

[24]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[25]  Guzmán Johnny,et al.  A family of nonconforming elements for the Brinkman problem , 2012 .

[26]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[27]  Kent-André Mardal,et al.  Preconditioners for Saddle Point Systems with Trace Constraints Coupling 2D and 1D Domains , 2016, SIAM J. Sci. Comput..

[28]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[29]  Miroslav Kuchta,et al.  Sub-voxel Perfusion Modeling in Terms of Coupled 3d-1d Problem , 2017, Lecture Notes in Computational Science and Engineering.

[30]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[31]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[32]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[33]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[34]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..