Zeros of Gaussian Analytic Functions and Determinantal Point Processes

The book examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. These processes share a property of 'point-repulsion', where distinct points are less likely to fall close to each other than in processes, such as the Poisson process, that arise from independent sampling. Nevertheless, the treatment in the book emphasizes the use of independence: for random power series, the independence of coefficients is key; for determinantal processes, the number of points in a domain is a sum of independent indicators, and this yields a satisfying explanation of the central limit theorem (CLT) for this point count. Another unifying theme of the book is invariance of considered point processes under natural transformation groups. The book strives for balance between general theory and concrete examples. On the one hand, it presents a primer on modern techniques on the interface of probability and analysis. On the other hand, a wealth of determinantal processes of intrinsic interest are analyzed; these arise from random spanning trees and eigenvalues of random matrices, as well as from special power series with determinantal zeros. The material in the book formed the basis of a graduate course given at the IAS-Park City Summer School in 2007; the only background knowledge assumed can be acquired in first-year graduate courses in analysis and probability.

[1]  O. Gaans Probability measures on metric spaces , 2022 .

[2]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[3]  Y. Peres,et al.  A Stable Marriage of Poisson and Lebesgue , 2005, math/0505668.

[4]  J. Ben Hough Large deviations for the zero set of an analytic function with diffusing coefficients , 2005 .

[5]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[6]  Donald J. Newman Analytic Number Theory , 1997 .

[7]  Carsten Thomassen,et al.  Resistances and currents in infinite electrical networks , 1990, J. Comb. Theory, Ser. B.

[8]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[9]  J. Kahane Some Random Series of Functions , 1985 .

[10]  Fedor Nazarov,et al.  Transportation to Random Zeroes by the Gradient Flow , 2005 .

[11]  J. Caillol,et al.  Exact results for a two-dimensional one-component plasma on a sphere , 1981 .

[12]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[13]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[14]  Manjunath Krishnapur Overcrowding estimates for zeroes of Planar and Hyperbolic Gaussian analytic functions , 2006 .

[15]  Birger Iversen,et al.  Hyperbolic Geometry: FUCHSIAN GROUPS , 1993 .

[16]  Bernd Kirstein,et al.  The Schur Algorithm in Terms of System Realizations , 2008, 0805.4732.

[17]  B. Simon Functional integration and quantum physics , 1979 .

[18]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[19]  Dan Romik,et al.  Gravitational allocation to Poisson points , 2006, math/0611886.

[20]  Gabriel Téllez,et al.  Two-Dimensional Coulomb Systems on a Surface of Constant Negative Curvature , 1998 .

[21]  S. Zienau Quantum Physics , 1969, Nature.

[22]  Eric Kostlan,et al.  On the spectra of Gaussian matrices , 1992 .

[23]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[24]  O. Bohigas,et al.  Quantum chaotic dynamics and random polynomials , 1996 .

[25]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[26]  D. Nualart GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .

[27]  Igor Pak,et al.  Partition bijections, a survey , 2006 .

[28]  J. Hannay,et al.  Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .

[29]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[30]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[31]  P. J. Forrester,et al.  Exact statistical properties of the zeros of complex random polynomials , 1999 .

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[33]  Peter J. Forrester,et al.  The two-dimensional Coulomb gas on a sphere: Exact results , 1992 .

[34]  S. Janson Gaussian Hilbert Spaces , 1997 .

[35]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[36]  N. O'Connell,et al.  PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .

[37]  P. Forrester Log-Gases and Random Matrices , 2010 .

[38]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[39]  H. Hochstadt Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .

[40]  Jack Levine,et al.  An Identity of Cayley , 1960 .

[41]  E. Kostlan On the Distribution of Roots of Random Polynomials , 1993 .

[42]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[43]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[44]  Lebowitz,et al.  Gaussian fluctuation in random matrices. , 1994, Physical review letters.

[45]  Yuval Peres,et al.  Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.

[46]  Helly Fourier transforms in the complex domain , 1936 .

[47]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[48]  Alexander Soshnikov Gaussian limit for determinantal random point fields , 2000 .

[49]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[50]  J. Gillis,et al.  Probability and Related Topics in Physical Sciences , 1960 .

[51]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[52]  Mikhail Sodin Zeroes of Gaussian analytic functions , 2000 .

[53]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[54]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[55]  G. Manificat,et al.  Large charge fluctuations in classical Coulomb systems , 1993 .

[56]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[57]  A. Volberg,et al.  The Jancovici–Lebowitz–Manificat Law for Large Fluctuations of Random Complex Zeroes , 2008 .

[58]  R. Durrett Probability: Theory and Examples , 1993 .

[59]  Boris Tsirelson,et al.  Random complex zeroes, III. Decay of the hole probability , 2003 .

[60]  J. Jackson Wiley Series in Probability and Mathematical Statistics , 2004 .

[61]  Manjunath Krishnapur Zeros of Random Analytic Functions , 2006 .

[62]  Steve Zelditch,et al.  EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .

[63]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[64]  Alon Nishry,et al.  Asymptotics of the Hole Probability for Zeros of Random Entire Functions , 2009, 0903.4970.

[65]  Eric M. Rains,et al.  High powers of random elements of compact Lie groups , 1997 .

[66]  R. Pemantle,et al.  Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.

[67]  I. Ibragimov,et al.  Norms of Gaussian sample functions , 1976 .

[68]  Chase E. Zachary,et al.  Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  C. W. Borchardt Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Function. , 1857 .

[70]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[71]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[72]  Richard Kenyon,et al.  Height Fluctuations in the Honeycomb Dimer Model , 2004 .

[73]  W. T. Tutte,et al.  Determinants and current flows in electric networks , 1992, Discret. Math..

[74]  Russell Lyons,et al.  Uniform spanning forests , 2001 .

[75]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[76]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[77]  J. Hawkes SOME RANDOM SERIES OF FUNCTIONS second edition (Cambridge Studies in Advanced Mathematics 5) , 1988 .