Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: Predicting the future of strained silicon

Using a classification scheme based on carrier confinement type (electrostatic and spatial) and the degrees of freedom of the mobile carriers (3DOF, 2DOF, and 1DOF), strain effects on 3DOF to 1DOF silicon logic devices are compared from quantum confinement and device geometry perspectives. For these varied device geometries and types, the effects of strain-induced band splitting and band warping on the modification of the average conductivity effective mass and carrier scattering rates are evaluated. It is shown that the beneficial effects of strain-induced band splitting are the most effective for devices with little or no initial band splitting and become less so for devices with already large built-in band splitting. For these devices with large splitting energy, the potential for strain-induced carrier conductivity mass reduction through repopulation of lower energy bands and the suppression of optical intervalley phonon scattering are limited. On the other hand, for all devices without spatial confin...

[1]  M. Fischetti,et al.  Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity , 2007 .

[2]  Ruqian Wu,et al.  Giant piezoresistance and its origin in Si(111) nanowires : First-principles calculations , 2007 .

[3]  M. Lundstrom,et al.  Physics of Carrier Backscattering in One- and Two-Dimensional Nanotransistors , 2009, IEEE Transactions on Electron Devices.

[4]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[5]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[6]  Gate width dependence on backscattering characteristics in the nanoscale strained complementary metal-oxide-semiconductor field-effect transistor , 2008 .

[7]  Susumu Sugiyama,et al.  Piezoresistance measurement on single crystal silicon nanowires , 2003 .

[8]  Gerhard Klimeck,et al.  Band Structure Lab , 2006 .

[9]  C. Reynaud,et al.  Photoluminescence properties of silicon nanocrystals as a function of their size , 2000 .

[10]  E. J. Ryder,et al.  Mobility of Holes and Electrons in High Electric Fields , 1953 .

[11]  Shashank Sharma,et al.  Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires. , 2006, Nano letters.

[12]  Y. Yeo,et al.  Strained Silicon Nanowire Transistors With Germanium Source and Drain Stressors , 2008, IEEE Transactions on Electron Devices.

[13]  M. Chou,et al.  Size and orientation dependence in the electronic properties of silicon nanowires , 2007 .

[14]  Avik W. Ghosh,et al.  Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers , 2004, cond-mat/0403709.

[15]  P. Hashemi,et al.  Gate-All-Around n-MOSFETs With Uniaxial Tensile Strain-Induced Performance Enhancement Scalable to Sub-10-nm Nanowire Diameter , 2009, IEEE Electron Device Letters.

[16]  Kenji Natori New Solution to High-Field Transport in Semiconductors: I. Elastic Scattering without Energy Relaxation , 2009 .

[17]  Fabrication of uniaxially strained silicon nanowires , 2008 .

[18]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[19]  K. Mistry,et al.  The High-k Solution , 2007, IEEE Spectrum.

[20]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[21]  F. Andrieu,et al.  Effect of strain on the electron effective mobility in biaxially strained silicon inversion layers: An experimental and theoretical analysis via atomic force microscopy measurements and Kubo-Greenwood mobility calculations , 2008 .

[22]  Simulations of nanowire transistors: atomistic vs. effective mass models , 2007, 0801.0123.

[23]  Paul W. Leu,et al.  Ab initio calculations of the mechanical and electronic properties of strained Si nanowires , 2008 .

[24]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Hole Transport , 2008, IEEE Transactions on Nanotechnology.

[25]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[26]  Sung Geun Kim,et al.  On the Bandstructure Velocity and Ballistic Current of Ultra-Narrow Silicon Nanowire Transistors as a Function of Cross Section Size, Orientation, and Bias , 2010, 1006.4174.

[27]  G. Klimeck,et al.  Electronic properties of silicon nanowires , 2005, IEEE Transactions on Electron Devices.

[28]  Scott E. Thompson,et al.  Hole mobility in silicon inversion layers: Stress and surface orientation , 2007 .

[29]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[30]  J. A. López-Villanueva,et al.  Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers , 1999 .

[31]  Sung-Hoon Lee,et al.  Strain-driven electronic band structure modulation of si nanowires. , 2008, Nano letters.

[32]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[33]  P. Su,et al.  Investigation of Coulomb Mobility in Nanoscale Strained PMOSFETs , 2008, IEEE Transactions on Nanotechnology.

[34]  A. Khakifirooz,et al.  Scalability of hole mobility enhancement in biaxially strained ultrathin body SOI , 2006, IEEE Electron Device Letters.

[35]  Hong Yu,et al.  Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs , 2009, Sensors.

[36]  G. Lo,et al.  Reduced carrier backscattering in heterojunction SiGe nanowire channels , 2008 .

[37]  T. Toriyama,et al.  First-Principle Study on Piezoresistance Effect in Silicon Nanowires , 2007, 2007 Digest of papers Microprocesses and Nanotechnology.

[38]  Hiroshi Iwai,et al.  Size-dependent properties of ballistic silicon nanowire field effect transistors , 2010 .

[39]  Juan Bautista Roldán,et al.  Coulomb scattering in strained‐silicon inversion layers on Si1−xGex substrates , 1996 .

[40]  A. Williamson,et al.  First principles simulations of the structural and electronic properties of silicon nanowires , 2006 .

[41]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .

[42]  Andrea Ghetti,et al.  Coupled Mechanical and 3-D Monte Carlo Simulation of Silicon Nanowire MOSFETs , 2007, IEEE Transactions on Nanotechnology.

[43]  M. Fischetti,et al.  Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion , 2001 .

[44]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[45]  R. Kotlyar,et al.  Physics of Hole Transport in Strained Silicon MOSFET Inversion Layers , 2006, IEEE Transactions on Electron Devices.

[46]  J. A. López-Villanueva,et al.  Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers , 2001 .

[47]  Khairul Alam,et al.  Electronic properties of a strained ⟨100⟩ silicon nanowire , 2009 .

[48]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[49]  J. Koga,et al.  Sub-band structure engineering for advanced CMOS channels , 2005 .

[50]  Ferry,et al.  Surface roughness at the Si(100)-SiO2 interface. , 1985, Physical review. B, Condensed matter.

[51]  M. Lundstrom,et al.  On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors , 2005, IEEE Transactions on Electron Devices.

[52]  L. Mathew,et al.  Carrier Mobility/Transport in Undoped-UTB DG FinFETs , 2007, IEEE Transactions on Electron Devices.

[53]  T. Boykin,et al.  Atomistic Approach for Nanoscale Devices at the Scaling Limit and Beyond– Valley Splitting in Si , 2005 .

[54]  Yang Liu,et al.  A Tight-Binding Study of the Ballistic Injection Velocity for Ultrathin-Body SOI MOSFETs , 2008, IEEE Transactions on Electron Devices.

[55]  T. Tezuka,et al.  Device Design and Electron Transport Properties of Uniaxially Strained-SOI Tri-Gate nMOSFETs , 2008, IEEE Transactions on Electron Devices.

[56]  Yoshihiko Kanemitsu,et al.  Efficient light emission from crystalline and amorphous silicon nanostructures , 2002 .

[57]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[58]  Wolfgang Fichtner,et al.  Atomistic treatment of interface roughness in Si nanowire transistors with different channel orientations , 2007 .

[59]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[60]  O. Weber,et al.  Experimental Examination and Physical Understanding of the Coulomb Scattering Mobility in Strained-Si nMOSFETs , 2008, IEEE Transactions on Electron Devices.

[61]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[62]  L. Donetti,et al.  Acoustic phonon confinement in silicon nanolayers: Effect on electron mobility , 2006 .

[63]  Arnaud Bournel,et al.  Ultra-short n-MOSFETs with strained Si: device performance and the effect of ballistic transport using Monte Carlo simulation , 2006 .

[64]  Pin Su,et al.  Impact of Process-Induced Strain on Coulomb Scattering Mobility in Short-Channel n-MOSFETs , 2008, IEEE Electron Device Letters.

[65]  Temperature dependence of enhanced hole mobility in uniaxial strained p-channel metal-oxide-semiconductor field-effect transistors and insight into the physical mechanisms , 2008 .

[66]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.

[67]  Atomistic study on electronic properties of nanoscale SOI channels , 2008 .

[68]  M. Fischetti,et al.  Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs , 2007, IEEE Transactions on Electron Devices.

[69]  Wen-Chin Lee,et al.  Characterizing the channel backscattering behavior in nanoscale strained complementary metal oxide semiconductor field-effect transistors , 2006 .

[70]  Full band Monte Carlo study of ballistic effects in nanometer-scaled strained P channel Double Gate MOSFETs , 2008 .

[71]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[72]  Hole transport in UTB MOSFETs in strained-Si directly on insulator with strained-Si thickness less than 5 nm , 2005, IEEE Electron Device Letters.

[73]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[74]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[75]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[76]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[77]  H. Scheel,et al.  Electronic band structure of high‐index silicon nanowires , 2005 .

[78]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[79]  S. Thompson,et al.  Comparison of Uniaxial Wafer Bending and Contact-Etch-Stop-Liner Stress Induced Performance Enhancement on Double-Gate FinFETs , 2008, IEEE Electron Device Letters.

[80]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[81]  M. P. Anantram,et al.  Strain induced change of bandgap and effective mass in silicon nanowires , 2008 .

[82]  N. Bhat,et al.  Bandstructure effects in ultra-thin-body double-gate field effect transistor : A fullband analysis , 2008 .

[83]  D. Vasileska,et al.  Electron Mobility in Silicon Nanowires , 2008, IEEE Transactions on Nanotechnology.

[84]  M. Ogawa,et al.  Strain Effects on Electronic Bandstructures in Nanoscaled Silicon: From Bulk to Nanowire , 2009, IEEE Transactions on Electron Devices.

[85]  S. Thompson,et al.  Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors , 2007 .

[86]  Iwao Ohdomari,et al.  Strain Distribution around SiO2/Si Interface in Si Nanowires: A Molecular Dynamics Study , 2007 .

[87]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[88]  S.C. Rustagi,et al.  Observation of Metal-Layer Stress on Si Nanowires in Gate-All-Around High- $\kappa$/Metal-Gate Device Structures , 2007, IEEE Electron Device Letters.

[89]  K. Natori,et al.  Compact Modeling of Ballistic Nanowire MOSFETs , 2008, IEEE Transactions on Electron Devices.

[90]  Avik W. Ghosh,et al.  Theoretical investigation of surface roughness scattering in silicon nanowire transistors , 2005, cond-mat/0502538.

[91]  D. Vasileska,et al.  Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering , 2008, 0806.4323.

[92]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[93]  T. Tezuka,et al.  [110] strained-SOI n-MOSFETs with higher electron mobility , 2003, IEEE Electron Device Letters.

[94]  J. A. López-Villanueva,et al.  Electron mobility in extremely thin single-gate silicon-on-insulator inversion layers , 1999 .

[95]  A. Gnudi,et al.  Band-Structure Effects in Ultrascaled Silicon Nanowires , 2007, IEEE Transactions on Electron Devices.

[96]  R. Kotlyar,et al.  Assessment of room-temperature phonon-limited mobility in gated silicon nanowires , 2004 .

[97]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[98]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[99]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[100]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[101]  Man-Fai Ng,et al.  Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach , 2007 .

[102]  A. Balandin,et al.  Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers , 2005 .

[103]  Noel Rodriguez,et al.  Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers , 2006 .