Optimal control of entanglement via quantum feedback

It has recently been shown that finding the optimal measurement on the environment for stationary linear quadratic Gaussian control problems is a semidefinite program. We apply this technique to the control of the Einstein-Podolsky-Rosen correlations between two bosonic modes interacting via a parametric Hamiltonian at steady state. The optimal measurement turns out to be nonlocal homodyne measurement---the outputs of the two modes must be combined before measurement. We also find the optimal local measurement and control technique. This gives the same degree of entanglement but a higher degree of purity than the local technique previously considered [S. Mancini, Phys. Rev. A 73, 010304(R) (2006)].

[1]  Stefano Mancini,et al.  Towards feedback control of entanglement , 2005 .

[2]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[3]  Vitali,et al.  Macroscopic coherence via quantum feedback. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Holevo,et al.  Capacity of quantum Gaussian channels , 1999 .

[7]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[8]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[9]  S. Mancini,et al.  Spin squeezing via quantum feedback , 2001 .

[10]  R. Handel,et al.  Deterministic Dicke-state preparation with continuous measurement and control , 2004, quant-ph/0402137.

[11]  H. Carmichael An open systems approach to quantum optics , 1993 .

[12]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[13]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[14]  Vitali,et al.  Effect of feedback on the decoherence of a Schrödinger-cat state: A quantum trajectory description. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[16]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  D. B. Horoshko,et al.  Direct Detection Feedback for Preserving Quantum Coherence in an Open Cavity , 1997 .

[18]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[19]  Viacheslav P. Belavkin,et al.  Non-Demolition Measurement and Control in Quantum Dynamical Systems , 1987 .

[20]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[21]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[22]  Stefano Mancini,et al.  Stochastic phase-space localization for a single trapped particle , 2000 .

[23]  Silvania F. Pereira,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification , 1992 .

[24]  L. Diosi,et al.  Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems , 2001 .

[25]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[26]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[27]  Alexander S. Holevo,et al.  Some statistical problems for quantum Gaussian states , 1975, IEEE Trans. Inf. Theory.

[28]  S. Mancini,et al.  Continuous quantum nondemolition feedback and unconditional atomic spin squeezing , 2002 .

[29]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[30]  F. Buscemi,et al.  Inverting quantum decoherence by classical feedback from the environment. , 2005, Physical review letters.

[31]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[32]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[33]  Hideo Mabuchi,et al.  Quantum feedback control of atomic motion in an optical cavity. , 2003, Physical Review Letters.

[34]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[35]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[36]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[37]  O. Jacobs,et al.  Introduction to Control Theory , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[39]  Reid,et al.  Correlations in nondegenerate parametric oscillation. II. Below threshold results. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  Stefano Mancini Markovian feedback to control continuous-variable entanglement , 2006 .

[41]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[42]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[43]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[44]  Wiseman Hm Erratum: Quantum theory of continuous feedback , 1994 .

[45]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[46]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[47]  H. Mabuchi,et al.  Inversion of quantum jumps in quantum optical systems under continuous observation. , 1996, Physical review letters.

[48]  Oluwole Adetunji,et al.  Remarks on the Wilson-Zimmermann expansion and some properties of them-point distribution , 1976 .

[49]  Stefano Mancini,et al.  Macroscopic mechanical oscillators at the quantum limit through optomechanical cooling , 2003 .