Probabilistic surface reconstruction from multiple data sets: An example for the Australian Moho
暂无分享,去创建一个
Thomas Bodin | Malcolm Sambridge | Michelle Salmon | Brian L. N. Kennett | B. Kennett | M. Sambridge | T. Bodin | M. Salmon
[1] A.,et al. Inverse Problems = Quest for Information , 2022 .
[2] Alberto Malinverno,et al. Two ways to quantify uncertainty in geophysical inverse problems , 2006 .
[3] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[4] Helmut Mayer,et al. Object extraction in photogrammetric computer vision , 2008 .
[5] C. Holmes,et al. Beyond kriging: dealing with discontinuous spatial data fields using adaptive prior information and Bayesian partition modelling , 2004, Geological Society, London, Special Publications.
[6] Malcolm Sambridge,et al. Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .
[7] P. Green,et al. Trans-dimensional Markov chain Monte Carlo , 2000 .
[8] M. Sambridge,et al. Seismic tomography with the reversible jump algorithm , 2009 .
[9] Walter H. F. Smith,et al. Gridding with continuous curvature splines in tension , 1990 .
[10] Peter M. Atkinson,et al. Non-stationary variogram models for geostatistical sampling optimisation: An empirical investigation using elevation data , 2007, Comput. Geosci..
[11] Walter H. F. Smith,et al. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry , 1997 .
[12] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[13] Alexei Pozdnoukhov,et al. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software , 2009 .
[14] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[15] Christopher Holmes,et al. Low temperature thermochronology and strategies for multiple samples: 2: Partition modelling for 2D/3D distributions with discontinuities , 2006 .
[16] M. Sambridge,et al. Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models , 2011 .
[17] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[18] Gabi Laske,et al. CRUST 5.1: A global crustal model at 5° × 5° , 1998 .
[19] Sw. Banerjee,et al. Hierarchical Modeling and Analysis for Spatial Data , 2003 .
[20] John Skilling,et al. Data analysis : a Bayesian tutorial , 1996 .
[21] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[22] A. Malinverno,et al. Receiver function inversion by trans‐dimensional Monte Carlo sampling , 2010 .
[23] F. Marone,et al. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia–Africa plate boundary region , 2003 .
[24] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[25] Scott A. Sisson,et al. Transdimensional Markov Chains , 2005 .
[26] G. Hampson,et al. A Bayesian approach to inverse modelling of stratigraphy, part 2: Validation tests , 2009 .
[27] M. Kylander,et al. Natural lead isotope variations in the atmosphere , 2010 .
[28] I. Parkinson,et al. Climate driven glacial-interglacial variations in the osmium isotope composition of seawater recorded by planktic foraminifera , 2010 .
[29] A. Malinverno. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .
[30] E. Kissling,et al. Three‐dimensional Moho topography in Italy: New constraints from receiver functions and controlled source seismology , 2011 .
[31] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[32] Alberto Malinverno,et al. Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .
[33] Josiane Zerubia,et al. A RJMCMC Algorithm for Object Processes in Image Processing , 2001, Monte Carlo Methods Appl..
[34] Stan E. Dosso,et al. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models , 2012 .
[35] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[36] H. Akaike. A new look at the statistical model identification , 1974 .
[37] Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo , 2010, 1002.1113.
[38] Ajay Jasra,et al. Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo , 2006 .
[39] S. Lee,et al. Moho map of South America from receiver functions and surface waves , 2010 .
[40] C. Lloyd. Local Models for Spatial Analysis , 2006 .
[41] M. Sambridge,et al. Transdimensional tomography with unknown data noise , 2012 .
[42] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[43] M. Sambridge,et al. Trans-dimensional inverse problems, model comparison and the evidence , 2006 .
[44] Stephen Billings,et al. Interpolation of geophysical data using continuous global surfaces , 2002 .
[45] M. Sambridge,et al. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems , 2009 .
[46] C. Geyer,et al. Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .
[47] Walter H. F. Smith,et al. New, improved version of generic mapping tools released , 1998 .
[48] Christopher C. Pain,et al. A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion , 2009 .
[49] M. Diament,et al. A comparison of surface fitting algorithms for geophysical data , 1990 .
[50] Jan Dettmer,et al. Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.
[51] Gan Zhang,et al. The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai-Tibetan Plateau , 2009 .
[52] B. Minsley. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .
[53] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[54] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[55] B. Kennett,et al. AusMoho: the variation of Moho depth in Australia , 2011 .
[56] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[57] J. Huelsenbeck,et al. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. , 2004, Molecular biology and evolution.
[58] Christophe Andrieu,et al. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..
[59] Ryoji Suzuki,et al. A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms , 2001, IEEE Transactions on Biomedical Engineering.