Probabilistic surface reconstruction from multiple data sets: An example for the Australian Moho

[1] Interpolation of spatial data is a widely used technique across the Earth sciences. For example, the thickness of the crust can be estimated by different active and passive seismic source surveys, and seismologists reconstruct the topography of the Moho by interpolating these different estimates. Although much research has been done on improving the quantity and quality of observations, the interpolation algorithms utilized often remain standard linear regression schemes, with three main weaknesses: (1) the level of structure in the surface, or smoothness, has to be predefined by the user; (2) different classes of measurements with varying and often poorly constrained uncertainties are used together, and hence it is difficult to give appropriate weight to different data types with standard algorithms; (3) there is typically no simple way to propagate uncertainties in the data to uncertainty in the estimated surface. Hence the situation can be expressed by Mackenzie (2004): “We use fantastic telescopes, the best physical models, and the best computers. The weak link in this chain is interpreting our data using 100 year old mathematics”. Here we use recent developments made in Bayesian statistics and apply them to the problem of surface reconstruction. We show how the reversible jump Markov chain Monte Carlo (rj-McMC) algorithm can be used to let the degree of structure in the surface be directly determined by the data. The solution is described in probabilistic terms, allowing uncertainties to be fully accounted for. The method is illustrated with an application to Moho depth reconstruction in Australia.

[1]  A.,et al.  Inverse Problems = Quest for Information , 2022 .

[2]  Alberto Malinverno,et al.  Two ways to quantify uncertainty in geophysical inverse problems , 2006 .

[3]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[4]  Helmut Mayer,et al.  Object extraction in photogrammetric computer vision , 2008 .

[5]  C. Holmes,et al.  Beyond kriging: dealing with discontinuous spatial data fields using adaptive prior information and Bayesian partition modelling , 2004, Geological Society, London, Special Publications.

[6]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[7]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[8]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[9]  Walter H. F. Smith,et al.  Gridding with continuous curvature splines in tension , 1990 .

[10]  Peter M. Atkinson,et al.  Non-stationary variogram models for geostatistical sampling optimisation: An empirical investigation using elevation data , 2007, Comput. Geosci..

[11]  Walter H. F. Smith,et al.  Marine gravity anomaly from Geosat and ERS 1 satellite altimetry , 1997 .

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  Alexei Pozdnoukhov,et al.  Machine Learning for Spatial Environmental Data: Theory, Applications, and Software , 2009 .

[14]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[15]  Christopher Holmes,et al.  Low temperature thermochronology and strategies for multiple samples: 2: Partition modelling for 2D/3D distributions with discontinuities , 2006 .

[16]  M. Sambridge,et al.  Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models , 2011 .

[17]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[18]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[19]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[20]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[21]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[22]  A. Malinverno,et al.  Receiver function inversion by trans‐dimensional Monte Carlo sampling , 2010 .

[23]  F. Marone,et al.  Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia–Africa plate boundary region , 2003 .

[24]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[25]  Scott A. Sisson,et al.  Transdimensional Markov Chains , 2005 .

[26]  G. Hampson,et al.  A Bayesian approach to inverse modelling of stratigraphy, part 2: Validation tests , 2009 .

[27]  M. Kylander,et al.  Natural lead isotope variations in the atmosphere , 2010 .

[28]  I. Parkinson,et al.  Climate driven glacial-interglacial variations in the osmium isotope composition of seawater recorded by planktic foraminifera , 2010 .

[29]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[30]  E. Kissling,et al.  Three‐dimensional Moho topography in Italy: New constraints from receiver functions and controlled source seismology , 2011 .

[31]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[32]  Alberto Malinverno,et al.  Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .

[33]  Josiane Zerubia,et al.  A RJMCMC Algorithm for Object Processes in Image Processing , 2001, Monte Carlo Methods Appl..

[34]  Stan E. Dosso,et al.  Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models , 2012 .

[35]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[36]  H. Akaike A new look at the statistical model identification , 1974 .

[37]  Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo , 2010, 1002.1113.

[38]  Ajay Jasra,et al.  Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo , 2006 .

[39]  S. Lee,et al.  Moho map of South America from receiver functions and surface waves , 2010 .

[40]  C. Lloyd Local Models for Spatial Analysis , 2006 .

[41]  M. Sambridge,et al.  Transdimensional tomography with unknown data noise , 2012 .

[42]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[43]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[44]  Stephen Billings,et al.  Interpolation of geophysical data using continuous global surfaces , 2002 .

[45]  M. Sambridge,et al.  Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems , 2009 .

[46]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[47]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[48]  Christopher C. Pain,et al.  A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion , 2009 .

[49]  M. Diament,et al.  A comparison of surface fitting algorithms for geophysical data , 1990 .

[50]  Jan Dettmer,et al.  Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.

[51]  Gan Zhang,et al.  The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai-Tibetan Plateau , 2009 .

[52]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[53]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[54]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[55]  B. Kennett,et al.  AusMoho: the variation of Moho depth in Australia , 2011 .

[56]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[57]  J. Huelsenbeck,et al.  Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. , 2004, Molecular biology and evolution.

[58]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[59]  Ryoji Suzuki,et al.  A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms , 2001, IEEE Transactions on Biomedical Engineering.