A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations

A scheme, stemming from the use of pseudospectral approximations to spatial derivatives followed by a time integrator based on trigonometric polynomials, is proposed for the numerical solutions of the N-coupled nonlinear Klein–Gordon equations. Numerical tests on one- and three-coupled Klein–Gordon equations are presented, which are geared towards understanding the accuracy and stability, and illustrating its efficiency and high resolution capacity in applications.

[1]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[2]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[3]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[4]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[5]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[6]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[7]  K. Porsezian,et al.  Painlevé analysis and complete integrability of coupled Klein-Gordon equations , 1995 .

[8]  Weiming Cao,et al.  Fourier Collocation Method for Solving Nonlinear Klein-Gordon Equation , 1993 .

[9]  Volker Grimm,et al.  On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations , 2005, Numerische Mathematik.

[10]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[11]  L. Vu-Quoc,et al.  INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .

[12]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[13]  K. Nakkeeran,et al.  Painlevé Analysis of $N$-Coupled Nonlinear Klein–Gordon Equations , 2003 .

[14]  David Cohen,et al.  Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems , 2006 .

[15]  Volker Grimm,et al.  On the Use of the Gautschi-Type Exponential Integrator for Wave Equations , 2006 .

[16]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[17]  Elias Deeba,et al.  A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation , 1996 .

[18]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[19]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[20]  R. Hirota,et al.  Hierarchies of Coupled Soliton Equations. I , 1991 .

[21]  Volker Grimm,et al.  A note on the Gautschi-type method for oscillatory second-order differential equations , 2005, Numerische Mathematik.

[22]  L. Vázquez,et al.  Numerical simulations of a nonlinear Klein-Gordon model. Applications , 1995 .

[23]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[24]  E. Hairer,et al.  Numerical Energy Conservation for Multi-Frequency Oscillatory Differential Equations , 2005 .

[25]  D. Duncan,et al.  SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .

[26]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[27]  Ernst Hairer,et al.  Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations , 2008, Numerische Mathematik.