Kink–antikink interaction forces and bound states in a ϕ 4 model with quadratic and quartic dispersion

We consider the interaction of solitary waves in a model involving the well-known ϕ 4 Klein–Gordon theory, but now bearing both Laplacian and biharmonic terms with different prefactors. As a result of the competition of the respective linear operators, we obtain three distinct cases as we vary the model parameters. In the first the biharmonic effect dominates, yielding an oscillatory inter-wave interaction; in the third the harmonic effect prevails yielding exponential interactions, while we find an intriguing linearly modulated exponential effect in the critical second case, separating the above two regimes. For each case, we calculate the force between the kink and antikink when initially separated with sufficient distance. Being able to write the acceleration as a function of the separation distance, and its corresponding ordinary differential equation, we test the corresponding predictions, finding very good agreement, where appropriate, with the corresponding partial differential equation results. Where the two findings differ, we explain the source of disparities. Finally, we offer a first glimpse of the interplay of harmonic and biharmonic effects on the results of kink–antikink collisions and the corresponding single- and multi-bounce windows.

[1]  D. Bazeia,et al.  Semi-compactness and multiple oscillating pulses in kink scattering , 2020, The European Physical Journal C.

[2]  N. S. Manton,et al.  Kink moduli spaces: Collective coordinates reconsidered , 2020, Physical Review D.

[3]  C. P. Constantinidis,et al.  Some novel considerations about the collective coordinates approximation for the scattering of ϕ 4 kinks , 2020, Journal of Physics A: Mathematical and Theoretical.

[4]  Robert J. Decker,et al.  Kink dynamics in a nonlinear beam model , 2020, Commun. Nonlinear Sci. Numer. Simul..

[5]  J. V. Wezel,et al.  UvA-DARE (Digital Academic Repository) An introduction to kinks in φ4-theory , 2021 .

[6]  C. Dai,et al.  Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals , 2020, Nonlinear Dynamics.

[7]  C. Dai,et al.  Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials , 2020, Nonlinear Dynamics.

[8]  Robert J. Decker,et al.  Kink–antikink interaction forces and bound states in a biharmonic ϕ4 model , 2020, Journal of Physics A: Mathematical and Theoretical.

[9]  A. Blanco-Redondo,et al.  Generalized dispersion Kerr solitons , 2020 .

[10]  Yi-Xiang Chen,et al.  Excitation management of crossed Akhmediev and Ma breather for a nonautonomous partially nonlocal Gross–Pitaevskii equation with an external potential , 2020, Nonlinear Dynamics.

[11]  A. Blanco-Redondo,et al.  The pure-quartic soliton laser , 2019, Nature Photonics.

[12]  A. Stefanov,et al.  On the normalized ground states for the Kawahara equation and a fourth order NLS , 2017, Discrete & Continuous Dynamical Systems - A.

[13]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[14]  Yi-Xiang Chen Excitation manipulation of three-dimensional completely localized rogue waves in a partially nonlocal and inhomogeneous nonlinear medium , 2019, Nonlinear Dynamics.

[15]  Robert J. Decker,et al.  Long-range interactions of kinks , 2018, Physical Review D.

[16]  A Dynamical Perspective on the ɸ4 Model , 2019, Nonlinear Systems and Complexity.

[17]  M. Stanislavova,et al.  Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation , 2019, Discrete & Continuous Dynamical Systems - B.

[18]  H. Weigel,et al.  Collective Coordinates in One-Dimensional Soliton Models Revisited , 2016, 1609.06833.

[19]  T. Krauss,et al.  Erratum: Pure-quartic solitons , 2016, Nature Communications.

[20]  T. Krauss,et al.  Pure-quartic solitons , 2015, Nature Communications.

[21]  Panayotis G. Kevrekidis,et al.  The Defocusing Nonlinear Schrödinger Equation - From Dark Solitons to Vortices and Vortex Rings , 2015 .

[22]  P. Kevrekidis,et al.  The sine-Gordon model and its applications : from pendula and Josephson junctions to gravity and high-energy physics , 2014 .

[23]  H. Weigel Kink–Antikink Scattering in φ4 and ϕ6 Models , 2013, 1309.6607.

[24]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[25]  Mark J. Ablowitz,et al.  Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons , 2011 .

[26]  P. McKenna,et al.  The existence of ground states for fourth-order wave equations , 2010, 1004.2775.

[27]  P. Hurley,et al.  Robert J , 2010 .

[28]  M. Škorić,et al.  Nonlinear physics of plasmas , 2010 .

[29]  A. B. Datseff On the nonlinear schrödinger equation , 2009 .

[30]  D. Frantzeskakis,et al.  Solitary Wave Collisions , 2009 .

[31]  Mohamed A. Helal,et al.  Solitons, Introduction to , 2009, Encyclopedia of Complexity and Systems Science.

[32]  Roy H. Goodman,et al.  Chaotic scattering in solitary wave interactions: a singular iterated-map description. , 2007, Chaos.

[33]  Richard Haberman,et al.  Kink-Antikink Collisions in the φ4 Equation: The n-Bounce Resonance and the Separatrix Map , 2005, SIAM J. Appl. Dyn. Syst..

[34]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[35]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[36]  A. Champneys,et al.  Solitary Waves in Nonlinear Beam Equations: Stability, Fission and Fusion , 2000 .

[37]  S. Levandosky Stability and Instability of Fourth-Order Solitary Waves , 1998 .

[38]  Y. Chen,et al.  Traveling Waves in a Nonlinearly Suspended Beam: Theoretical Results and Numerical Observations , 1997 .

[39]  A. Kudryavtsev,et al.  Solitons and their interactions in classical field theory , 1997 .

[40]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[41]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[42]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[43]  R. Matzner,et al.  Fractal structure in the scalar λ ( φ 2 − 1 ) 2 theory , 1991 .

[44]  David K. Campbell,et al.  Resonance structure in kink-antikink interactions in φ4 theory , 1983 .

[45]  Mark J. Ablowitz,et al.  Solitary wave collisions , 1979 .

[46]  T. Sugiyama Kink-Antikink Collisions in the Two-Dimensional φ4 Model , 1979 .

[47]  N. S. Manton,et al.  An effective Lagrangian for solitons , 1979 .

[48]  S. Aubry A unified approach to the interpretation of displacive and order–disorder systems. II. Displacive systems , 1976 .

[49]  A. E. Kudryavtsev,et al.  Solitonlike solutions for a Higgs scalar field , 1975 .