Looking beyond XTR

XTR is a general methodthat can be appliedto discrete logarithm based cryptosystems in extension fields of degree six, providing a compact representation of the elements involved. In this paper we present a precise formulation of the Brouwer-Pellikaan-Verheul conjecture, originally posedin [4], concerning the size of XTR-like representations of elements in extension fields of arbitrary degree. If true this conjecture wouldpro vide even more compact representations of elements than XTR in extension fields of degree thirty. We test the conjecture by experiment, showing that in fact it is unlikely that such a compact representation of elements can be achieved in extension fields of degree thirty.

[1]  Arjen K. Lenstra,et al.  Speeding Up XTR , 2001, ASIACRYPT.

[2]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[3]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[4]  Rudolf Lidl,et al.  Permutation Polynomials in RSA-Cryptosystems , 1983, CRYPTO.

[5]  Andries E. Brouwer,et al.  Doing More with Fewer Bits , 1999, ASIACRYPT.

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[8]  Winfried B. Müller,et al.  Cryptanalysis of the Dickson Scheme , 1985, EUROCRYPT.

[9]  Guang Gong,et al.  Public-key cryptosystems based on cubic finite field extensions , 1999, IEEE Trans. Inf. Theory.

[10]  Leonard M. Adleman,et al.  A Subexponential Algorithm for Discrete Logarithms over All Finite Fields , 1993, CRYPTO.

[11]  Arjen K. Lenstra,et al.  An overview of the XTR public key system , 2001 .

[12]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[13]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[14]  Chris J. Skinner,et al.  A Public-Key Cryptosystem and a Digital Signature System BAsed on the Lucas Function Analogue to Discrete Logarithms , 1994, ASIACRYPT.

[15]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[16]  Arjen K. Lenstra,et al.  Fast Irreducibility and Subgroup Membership Testing in XTR , 2001, Public Key Cryptography.

[17]  Claus-Peter Schnorr,et al.  Efficient signature generation by smart cards , 2004, Journal of Cryptology.

[18]  Arjen K. Lenstra,et al.  Key Improvements to XTR , 2000, ASIACRYPT.

[19]  Arjen K. Lenstra,et al.  Using Cyclotomic Polynomials to Construct Efficient Discrete Logarithm Cryptosystems Over Finite Fields , 1997, ACISP.

[20]  Arjen K. Lenstra,et al.  Some Remarks on Lucas-Based Cryptosystems , 1995, CRYPTO.