Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers.

Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. Here, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. The experimental results are consistent with previous findings as well as with a straightforward theoretical model that is presented here.

[1]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[2]  A Amirfazli,et al.  Understanding pattern collapse in photolithography process due to capillary forces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  Dinesh Chandra,et al.  Capillary-force-induced clustering of micropillar arrays: is it caused by isolated capillary bridges or by the lateral capillary meniscus interaction force? , 2009, Langmuir : the ACS journal of surfaces and colloids.

[4]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[5]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[6]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[7]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[8]  Hongbin Wu,et al.  Electronic structure of titanium oxide clusters: TiOy (y = 1−3) and (TiO2)n (n = 1−4) , 1997 .

[9]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[10]  Mark L. Schattenburg,et al.  Large‐area achromatic interferometric lithography for 100 nm period gratings and grids , 1996 .

[11]  S. Xiao,et al.  Surface-enhanced Raman spectroscopy: nonlocal limitations. , 2012, Optics letters.

[12]  David J. Singh,et al.  Light scattering and surface plasmons on small spherical particles , 2014, 1407.2345.

[13]  M. S. Tame,et al.  Quantum Plasmonics , 2013 .

[14]  Zexiang Shen,et al.  Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. , 2011, ACS nano.

[15]  L. Dal Negro,et al.  Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. , 2011, ACS nano.

[16]  J. Cuevas,et al.  Field enhancement in subnanometer metallic gaps , 2011, 1104.1712.

[17]  Wei Wu,et al.  Nanoimprint lithography: an enabling technology for nanophotonics , 2015, Applied Physics A.

[18]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[19]  R Stanley Williams,et al.  Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. , 2011, Nano letters.

[20]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[21]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[22]  D. Ansell,et al.  Hybrid graphene plasmonic waveguide modulators , 2015, Nature communications.

[23]  L. Novotný,et al.  Antennas for light , 2011 .

[24]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[25]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[26]  H. Duan,et al.  Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy. , 2016, ACS nano.

[27]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[28]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[29]  W. Fowler,et al.  The Physics of SiO2 and its Interfaces : S. T. Pantelides (Editor), Pergamon, 1978, 488 pp., U.S. $38.50. , 1981 .

[30]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[31]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[32]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[33]  Xiaoyuan Chen,et al.  Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. , 2015, Accounts of chemical research.

[34]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[35]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[36]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[37]  George C Schatz,et al.  Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[38]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[39]  Yung Doug Suh,et al.  Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. , 2014, Journal of the American Chemical Society.

[40]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[41]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[42]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[43]  Javier Aizpurua,et al.  Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. , 2013, Optics express.

[44]  J. R. Peterson,et al.  Photodetachment of WO- 3: The Electron Affinity of WO3. , 1991 .

[45]  Optical response in subnanometer gaps due to nonlocal response and quantum tunneling , 2012 .

[46]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[47]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[48]  Zhendong Yan,et al.  Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation , 2013 .

[49]  Huigao Duan,et al.  Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. , 2010, Nano letters.

[50]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[51]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[52]  Yan Fang,et al.  Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. , 2016, ACS nano.

[53]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[54]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[55]  Wei Wu,et al.  Full-color reflective display system based on high contrast gratings , 2014 .

[56]  Masatoshi Kotera,et al.  Three-dimensional simulation of resist pattern deformation by surface tension at the drying process , 2005 .

[57]  H. Hofmann,et al.  Dielectric properties of silver nanoparticles coated with silica shells of different thicknesses , 2013 .

[58]  Ligang Wu,et al.  Surface plasmon response of metal spherical nanoshells coated with dielectric overlayer , 2013 .

[59]  Ebrahim Forati,et al.  Photoemission-based microelectronic devices , 2015, Nature Communications.

[60]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[61]  Yuhan Yao,et al.  Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography , 2015 .

[62]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[63]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[64]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[65]  Absorption properties of the composite silver/dye nanoparticles in colloidal solutions , 2008 .

[66]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[67]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[68]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[69]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .