Generalised Density Forecast Combinations

Density forecast combinations are becoming increasingly popular as a means of improving forecast ‘accuracy’, as measured by a scoring rule. In this paper we generalise this literature by letting the combination weights follow more general schemes. Sieve estimation is used to optimise the score of the generalised density combination where the combination weights depend on the variable one is trying to forecast. Specific attention is paid to the use of piecewise linear weight functions that let the weights vary by region of the density. We analyse these schemes theoretically, in Monte Carlo experiments and in an empirical study. Our results show that the generalised combinations outperform their linear counterparts.

[1]  George Kapetanios,et al.  A Nonlinear Panel Data Model of Cross-Sectional Dependence , 2014 .

[2]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[3]  Dick van Dijk,et al.  Likelihood-based scoring rules for comparing density forecasts in tails , 2011 .

[4]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[5]  J. Davidson Stochastic Limit Theory , 1994 .

[6]  R. Jong Central Limit Theorems for Dependent Heterogeneous Random Variables , 1997, Econometric Theory.

[7]  Marco Del Negro,et al.  Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance , 2014 .

[8]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[9]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[10]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[11]  Vu,et al.  Time-Varying Combinations of Predictive Densities Using Nonlinear Filtering , 2012 .

[12]  Barbara Rossi,et al.  Advances in Forecasting Under Instability , 2012 .

[13]  Michael P. Clements,et al.  Forecasting Non-Stationary Economic Time Series , 1999 .

[14]  Bruce E. Hansen,et al.  Testing for linearity , 1999 .

[15]  K. Chan,et al.  Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .

[16]  Shaun P. Vahey,et al.  Combining forecast densities from VARs with uncertain instabilities , 2010 .

[17]  T. Gneiting,et al.  Combining Predictive Distributions , 2011, 1106.1638.

[18]  Gianni Amisano,et al.  Comparing Density Forecasts via Weighted Likelihood Ratio Tests , 2007 .

[19]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[20]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast? , 2006 .

[21]  S. Hall,et al.  Combining density forecasts , 2007 .

[22]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[23]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[24]  Jesus Gonzalo,et al.  Subsampling inference in threshold autoregressive models , 2005 .

[25]  J. Landes,et al.  Strictly Proper Scoring Rules , 2014 .

[26]  Gianni Amisano,et al.  Prediction with Misspecified Models , 2012 .

[27]  Timo Teräsvirta,et al.  Modelling Non-Linear Economic Relationships , 1993 .

[28]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[29]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[30]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[31]  Daniel F. Waggoner,et al.  Confronting Model Misspecification in Macroeconomics , 2012 .

[32]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .