Permeation of skin with (C60) fullerene dispersions

Dispersions in transcutol/isopropyl myristate make C60 fullerene molecules suitable for transdermal delivery. We found that C60 can successfully permeate the skin using pig skin in Franz diffusion cells. Molecular dynamics simulations and transmission electron microscopy confirmed these observations. Basic cosmetic formulations with transcutol/isopropyl myristate without harsh organic solvents show a high potential for delivery of C60 for biopharmaceutical and cosmetics applications.

[1]  Mahiran Basri,et al.  Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[2]  D. Pal,et al.  Free radicals, natural antioxidants, and their reaction mechanisms , 2015 .

[3]  Uda Hashim,et al.  Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors. , 2015, Biosensors & bioelectronics.

[4]  Zhiguo Zhou Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents , 2013, Pharmaceutics.

[5]  Nuno G. Azoia,et al.  In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. , 2013, Colloids and surfaces. B, Biointerfaces.

[6]  C. Kepley,et al.  Application of fullerenes in nanomedicine: an update. , 2013, Nanomedicine.

[7]  Rui Liu,et al.  Synthesis and functionalization of [60]fullerene-fused imidazolines. , 2013, Organic letters.

[8]  S. Höfinger,et al.  A computational analysis of the insertion of carbon nanotubes into cellular membranes. , 2011, Biomaterials.

[9]  P. Luo,et al.  Fullerenes for applications in biology and medicine. , 2011, Current medicinal chemistry.

[10]  P. Herckes,et al.  Detection of fullerenes (C60 and C70) in commercial cosmetics. , 2011, Environmental pollution.

[11]  Vicki Stone,et al.  Review of fullerene toxicity and exposure--appraisal of a human health risk assessment, based on open literature. , 2010, Regulatory toxicology and pharmacology : RTP.

[12]  V. Lobo,et al.  Free radicals, antioxidants and functional foods: Impact on human health , 2010, Pharmacognosy reviews.

[13]  R. Iyer,et al.  Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. , 2010, Toxicology and applied pharmacology.

[14]  R. Lenk,et al.  Fullerene nanomaterials inhibit phorbol myristate acetate‐induced inflammation , 2009, Experimental dermatology.

[15]  H. Weiner,et al.  Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. , 2008, The Journal of clinical investigation.

[16]  D. van der Spoel,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[17]  D. Bedrov,et al.  Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. , 2008, The journal of physical chemistry. B.

[18]  T. Braun,et al.  The Solubility of C60 Fullerene in Long Chain Fatty Acids Esters , 2007 .

[19]  T. Braun,et al.  Olive Oil as a Biocompatible Solvent for Pristine C60 , 2007 .

[20]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[21]  M. McAleer,et al.  In vivo Radioprotection by the Fullerene Nanoparticle DF-1 as Assessed in a Zebrafish Model , 2006, Clinical Cancer Research.

[22]  G. Carrougher,et al.  Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar. , 2006, Burns : journal of the International Society for Burn Injuries.

[23]  J. West,et al.  Nano-C60 cytotoxicity is due to lipid peroxidation. , 2005, Biomaterials.

[24]  M. Prato,et al.  Fullerene derivatives: an attractive tool for biological applications. , 2003, European journal of medicinal chemistry.

[25]  R. Flyunt,et al.  Solvent Effects on the Solubility of C60 fullerene , 2003 .

[26]  G. H. Nancollas,et al.  Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C(60)(OH)(16)AMBP to mineralized bone. , 2002, Bioorganic & medicinal chemistry.

[27]  Yizhak Marcus,et al.  Solubility of C60 Fullerene , 2001 .

[28]  W. Eaglstein,et al.  THE PIG AS A MODEL FOR HUMAN WOUND HEALING , 2001, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[29]  I. Kiss,et al.  Artificial Neural Network Approach to Predict the Solubility of C60 in Various Solvents , 2000 .

[30]  P. Corti,et al.  Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[31]  C. K. Shen,et al.  C(60) and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. , 1999, Journal of medicinal chemistry.

[32]  S W Hui,et al.  Time-dependent ultrastructural changes to porcine stratum corneum following an electric pulse. , 1999, Biophysical journal.

[33]  J E Riviere,et al.  Percutaneous absorption of salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. , 1998, Toxicology and applied pharmacology.

[34]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[35]  Shen,et al.  Carboxyfullerenes as neuroprotective agents. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Catalán,et al.  THE COLORS OF C60 SOLUTIONS , 1995 .

[37]  Eric W. Smith,et al.  The selection and use of natural and synthetic membranes for in vitro diffusion experiments , 1994 .

[38]  Rodney S. Ruoff,et al.  Solubility of fullerene (C60) in a variety of solvents , 1993 .

[39]  K. Preston,et al.  Radical Reactions of C60 , 1991, Science.

[40]  J. Hopewell,et al.  Epidermal cell kinetics of the pig: a review , 1990, Cell and tissue kinetics.

[41]  K. Sugibayashi,et al.  Effect and mode of action of aliphatic esters on the in vitro skin permeation of nicorandil , 1988 .

[42]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  R. Bronaugh,et al.  Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. , 1982, Toxicology and applied pharmacology.

[45]  K A Holbrook,et al.  Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. , 1974, The Journal of investigative dermatology.

[46]  Vukosava M Torres,et al.  Solubilization of fullerene C60 in micellar solutions of different solubilizers. , 2011, Colloids and surfaces. B, Biointerfaces.

[47]  F. Cataldo Solubility of Fullerenes in Fatty Acids Esters: A New Way to Deliver In Vivo Fullerenes. Theoretical Calculations and Experimental Results , 2008 .

[48]  Open Access Full Text Article , 2008 .

[49]  H. Benson,et al.  Transdermal drug delivery: penetration enhancement techniques. , 2005, Current drug delivery.

[50]  F. Cataldo Encapsulation of C60 fullerene in γ-cyclodextrin: a new concept in the protection of organic substrates and polymers from ozone attack: Kinetic aspects on the reactivity between C60 and O3 , 2002 .

[51]  L. Felton,et al.  Influence of Transcutol CG on the skin accumulation and transdermal permeation of ultraviolet absorbers. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.