Building aqueous K-ion batteries for energy storage

[1]  Tongchao Liu,et al.  Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries , 2019, Nature Energy.

[2]  David G. Mackanic,et al.  Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries , 2018 .

[3]  Masato M. Ito,et al.  Over 2 V Aqueous Sodium‐Ion Battery with Prussian Blue‐Type Electrodes , 2018, Small Methods.

[4]  Chuan Zhao,et al.  Ultrafast Aqueous Potassium‐Ion Batteries Cathode for Stable Intermittent Grid‐Scale Energy Storage , 2018, Advanced Energy Materials.

[5]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[6]  Shinichi Komaba,et al.  Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion". , 2018, Chemical record.

[7]  Gerbrand Ceder,et al.  Recent Progress and Perspective in Electrode Materials for K‐Ion Batteries , 2018 .

[8]  Fei Du,et al.  Water-in-Salt Electrolyte for Potassium-Ion Batteries , 2018 .

[9]  Andreas Jossen,et al.  Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids , 2017 .

[10]  Deepak Kumar,et al.  Progress and prospects of sodium-sulfur batteries: A review , 2017 .

[11]  Yun Qiao,et al.  Role of Acid in Tailoring Prussian Blue as Cathode for High-Performance Sodium-Ion Battery. , 2017, Chemistry.

[12]  Yuesheng Wang,et al.  “Water‐in‐Salt” Electrolyte Makes Aqueous Sodium‐Ion Battery Safe, Green, and Long‐Lasting , 2017 .

[13]  Yi Cui,et al.  High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate , 2017 .

[14]  Yitong Qi,et al.  Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System. , 2017, Angewandte Chemie.

[15]  Kuan-Yi Lee,et al.  Universal quinone electrodes for long cycle life aqueous rechargeable batteries. , 2017, Nature materials.

[16]  Masato M. Ito,et al.  Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode , 2017 .

[17]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[18]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[19]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[20]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[21]  John B Goodenough,et al.  An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3 MnTi(PO4 )3. , 2016, Angewandte Chemie.

[22]  Yuki Yamada,et al.  Hydrate-melt electrolytes for high-energy-density aqueous batteries , 2016, Nature Energy.

[23]  T. Shibata,et al.  Enhanced battery performance in manganese hexacyanoferrate by partial substitution , 2016 .

[24]  Nicholas Opiyo,et al.  Energy storage systems for PV-based communal grids , 2016 .

[25]  Selena M. Russell,et al.  Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. , 2016, Angewandte Chemie.

[26]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[27]  T. Rojo,et al.  Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries , 2015 .

[28]  Yong Liu,et al.  Vacancy‐Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium‐Ion Batteries , 2015 .

[29]  J. Goodenough,et al.  Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation , 2015, Chemistry of Materials.

[30]  Xinping Ai,et al.  Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries , 2015 .

[31]  Yitai Qian,et al.  An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage , 2015 .

[32]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[33]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[34]  Jiangfeng Qian,et al.  Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry. , 2014, ChemSusChem.

[35]  Yi Cui,et al.  Full open-framework batteries for stationary energy storage , 2014, Nature Communications.

[36]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[37]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[38]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[39]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[40]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[41]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[42]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[43]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[44]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[45]  Stanford R. Ovshinsky,et al.  Recent advances in NiMH battery technology , 2007 .

[46]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.