A Microphase Separation Strategy for the Infrared Transparency‐Thermomechanical Property Conundrum in Sulfur‐Rich Copolymers

With intrinsic optical and dynamic properties of polysulfide chains, inverse vulcanized copolymers have demonstrated immense potential for infrared (IR) optical applications. However, preparing highly IR‐transparent sulfur‐rich copolymers without sacrificing their thermomechanical properties remains challenging. To overcome the trade‐off relationship between IR optical and thermomechanical properties, an in situ microphase separation strategy for the inverse vulcanization of elemental sulfur utilizing self‐crosslinkable 1,3,5‐trivinylbenzene (TVB) is presented. Even with 80 wt% sulfur content, the microphase‐separated TVB‐rich domain self‐reinforces the copolymer with a noteworthy modulus of ≈2.0 GPa and a high glass transition temperature (Tg) of 92.6 °C, while still exhibiting outstanding IR optical properties. This work is expected to provide insights into the fundamental structure–property relationships of sulfur‐rich copolymers and pave the way for various practical applications.

[1]  R. Norwood,et al.  High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics , 2022, Advanced Optical Materials.

[2]  P. Levkin,et al.  Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds , 2022, Angewandte Chemie.

[3]  R. S. Glass,et al.  Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. , 2021, Journal of the American Chemical Society.

[4]  Minbaek Lee,et al.  Toxic Gas-Free Synthesis of Extremely Negative Triboelectric Sulfur Copolymer Blends Via Phase Separation of Fluorine-Rich Polymers , 2021, Nano Energy.

[5]  T. Hasell,et al.  Investigating the Role and Scope of Catalysts in Inverse Vulcanization , 2021 .

[6]  K. Char,et al.  One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers , 2020, Science Advances.

[7]  Xinping Wang,et al.  Concentration-Dominated Orientation of Phenyl Groups at the Polystyrene/Graphene Interface. , 2020, ACS macro letters.

[8]  R. Norwood,et al.  100th Anniversary of Macromolecular Science Viewpoint: High Refractive Index Polymers from Elemental Sulfur for Infrared Thermal Imaging and Optics. , 2020, ACS macro letters.

[9]  K. Char,et al.  Inverse Vulcanization Polymers with Enhanced Thermal Properties via Divinylbenzene Homopolymerization-Assisted Cross-Linking. , 2019, ACS macro letters.

[10]  Laura E. Anderson,et al.  Infrared Fingerprint Engineering: A Molecular Design Approach to Long Wave Infrared Transparency with Polymeric Materials. , 2019, Angewandte Chemie.

[11]  Laura E. Anderson,et al.  Infrared Fingerprint Engineering: A Molecular‐Design Approach to Long‐Wave Infrared Transparency with Polymeric Materials , 2019, Angewandte Chemie.

[12]  Jonathan A. Campbell,et al.  Crosslinker co-polymerisation for property control in inverse vulcanisation. , 2019, Chemistry.

[13]  Youngjae Yoo,et al.  Synthesis of Poly(phenylene polysulfide) Networks from Elemental Sulfur and p-Diiodobenzene for Stretchable, Healable, and Reprocessable Infrared Optical Applications. , 2019, ACS macro letters.

[14]  T. Hasell,et al.  Catalytic inverse vulcanization , 2019, Nature Communications.

[15]  Michael P. Hunt,et al.  Optical Properties of a Sulfur-Rich Organically Modified Chalcogenide Polymer Synthesized via Inverse Vulcanization and Containing an Organometallic Comonomer. , 2019, ACS macro letters.

[16]  Michael Vollmer and Klaus Peter Mollmann,et al.  Infrared thermal imaging , 2018 .

[17]  T. Hasell,et al.  High sulfur content polymers: The effect of crosslinker structure on inverse vulcanization , 2018, Journal of polymer science. Part A, Polymer chemistry.

[18]  Liliana Ruiz Diaz,et al.  One Dimensional Photonic Crystals Using Ultrahigh Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers. , 2018, ACS macro letters.

[19]  J. Mann,et al.  Molecular Structure, Chain Dimensions, and Linear Rheology of Poly(4-vinylbiphenyl) , 2017 .

[20]  Edward Anthony LaVilla,et al.  Chalcogenide Hybrid Inorganic/Organic Polymers: Ultrahigh Refractive Index Polymers for Infrared Imaging. , 2017, ACS macro letters.

[21]  P. Théato,et al.  Mechanical and Electrical Properties of Sulfur-Containing Polymeric Materials Prepared via Inverse Vulcanization † , 2017, Polymers.

[22]  Edward Anthony LaVilla,et al.  High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene. , 2016, ACS macro letters.

[23]  Kookheon Char,et al.  Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense , 2016 .

[24]  P. Kohl,et al.  Decomposable and Template Polymers: Fundamentals and Applications , 2016 .

[25]  Laura E. Anderson,et al.  Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. , 2015, ACS macro letters.

[26]  A. Shockravi,et al.  Synthesis and structure–property relationships of novel thiazole‐containing poly(amide imide)s with high refractive indices and low birefringences , 2015 .

[27]  Tomoya Higashihara,et al.  Recent Progress in High Refractive Index Polymers , 2015 .

[28]  K. Char,et al.  Preparation of Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur. , 2014, ACS macro letters.

[29]  Soha Namnabat,et al.  New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers , 2014, Advanced materials.

[30]  Jeong Jae Wie,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[31]  Hanako Asai,et al.  Nonuniformity in Cross-Linked Natural Rubber as Revealed by Contrast-Variation Small-Angle Neutron Scattering , 2010 .

[32]  Bruno Bureau,et al.  Glasses for seeing beyond visible. , 2008, Chemistry.

[33]  M. Head‐Gordon,et al.  On the T-shaped structures of the benzene dimer , 2007 .

[34]  C. Glinka Methods of X-Ray and Neutron Scattering in Polymer Science, by Ryong-Joon Roe , 2001 .

[35]  R. Roe,et al.  Methods of X-ray and Neutron Scattering in Polymer Science , 2000 .

[36]  H. W. Mccormick Ceiling temperature of α‐methylstyrene , 1957 .

[37]  M. St-Jacques,et al.  Microphase Separation in Low Molecular Weight Styrene-Isoprene Diblock Copolymers Studied by DSC and 13C NMR , 1980 .

[38]  P. F. Onyon Polymer Handbook , 1972, Nature.