Deterministic secure communication without using entanglement

We show a deterministic secure direct communication protocol using single qubit in a mixed state. The security of this protocol is based on the security proof of BB84 protocol. It can be realized by the current technologies.

[1]  H. Weinfurter,et al.  Ascertaining the values of sigma x, sigma y, and sigma z of a polarization qubit. , 2002, Physical review letters.

[2]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical review letters.

[3]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[4]  M. J. Fitch,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[5]  J. Roch,et al.  Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film. , 2001, Optics letters.

[6]  Hoi-Kwong Lo,et al.  Proof of unconditional security of six-state quantum key distribution scheme , 2001, Quantum Inf. Comput..

[7]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[8]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[9]  P. Grangier,et al.  Single-photon generation by pulsed excitation of a single dipole , 2000, quant-ph/0007037.

[10]  D. Bethune,et al.  An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light , 2000, IEEE Journal of Quantum Electronics.

[11]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[12]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[13]  G. Brassard,et al.  Security aspects of practical quantum cryptography , 1999, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[14]  M. Bourennane,et al.  Experiments on long wavelength (1550 nm) "plug and play" quantum cryptography systems. , 1999, Optics express.

[15]  Y. Yamamoto,et al.  A single-photon turnstile device , 1999, Nature.

[16]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[17]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[18]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[19]  N. Gisin,et al.  Performance of InGaAs/InP Avalanche Photodiodes as Gated-Mode Photon Counters. , 1998, Applied optics.

[20]  T. Mor No Cloning of Orthogonal States in Composite Systems , 1998, quant-ph/9802036.

[21]  M. Nielsen,et al.  Information-theoretic approach to quantum error correction and reversible measurement , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  염흥렬,et al.  [서평]「Applied Cryptography」 , 1997 .

[23]  De Martini F,et al.  Single-mode generation of quantum photon states by excited single molecules in a microcavity trap. , 1996, Physical review letters.

[24]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[25]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[26]  A. Peres How to differentiate between non-orthogonal states , 1988 .

[27]  Vaidman,et al.  How to ascertain the values of sigmax, sigma y, and sigma z of a spin-1/2 particle. , 1987, Physical review letters.

[28]  D. Dieks Communication by EPR devices , 1982 .

[29]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[30]  Alexander Semenovich Holevo Statistical problems in quantum physics , 1973 .

[31]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..