Limit theorems for mergesort

Central and local limit theorems (including large deviations) are established for the number of comparisons used by the standard top-down recursive mergesort under the uniform permutation model. The method of proof utilizes Dirichlet series, Mellin transforms and standard analytic methods in probability theory.

[1]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[2]  Helmut Prodinger,et al.  Bottom-up mergesort — A detailed analysis , 1995, Algorithmica.

[3]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[4]  P. Spreij Probability and Measure , 1996 .

[5]  J. Kubilius,et al.  Probabilistic Methods in the Theory of Numbers , 1964 .

[6]  P. Gács,et al.  Algorithms , 1992 .

[7]  Mireille Régnier A Limiting Distribution for Quicksort , 1989, RAIRO Theor. Informatics Appl..

[8]  P. Hennequin Combinatorial Analysis of Quicksort Algorithm , 1989, RAIRO Theor. Informatics Appl..

[9]  Philippe Flajolet,et al.  Mellin transforms and asymptotics , 1994, Acta Informatica.

[10]  Robert Sedgewick,et al.  Queue-Mergesort , 1993, Inf. Process. Lett..

[11]  Philippe Jacquet,et al.  Limiting Distribution for the Depth in Patricia Tries , 1993, SIAM J. Discret. Math..

[12]  V. V. Petrov,et al.  Limit Theorems of Probability Theory , 2000 .

[13]  M. Marden Geometry of Polynomials , 1970 .

[14]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[15]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .