Structured Synthesis for Probabilistic Systems

We introduce the concept of structured synthesis for Markov decision processes. A structure is induced from finitely many pre-specified options for a system configuration. We define the structured synthesis problem as a nonlinear programming problem (NLP) with integer variables. As solving NLPs is not feasible in general, we present an alternative approach. A transformation of models specified in the PRISM probabilistic programming language creates models that account for all possible system configurations by nondeterministic choices. Together with a control module that ensures consistent configurations throughout a run of the system, this transformation enables the use of optimized tools for model checking in a black-box fashion. While this transformation increases the size of a model, experiments with standard benchmarks show that the method provides a feasible approach for structured synthesis. We motivate and demonstrate the usefulness of the approach along a realistic case study involving surveillance by unmanned aerial vehicles in a shipping facility.

[1]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[2]  Michael K. Reiter,et al.  Crowds: anonymity for Web transactions , 1998, TSEC.

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  Sebastian Junges,et al.  PROPhESY: A PRObabilistic ParamEter SYnthesis Tool , 2015, CAV.

[5]  Sebastian Junges,et al.  Shepherding Hordes of Markov Chains , 2019, TACAS.

[6]  Norman S. Kopeika,et al.  A System Engineering Approach to Imaging , 1998 .

[7]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[8]  Christel Baier,et al.  ProFeat: feature-oriented engineering for family-based probabilistic model checking , 2017, Formal Aspects of Computing.

[9]  Scott Sanner,et al.  Real-time dynamic programming for Markov decision processes with imprecise probabilities , 2016, Artif. Intell..

[10]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[11]  Marta Z. Kwiatkowska,et al.  The PRISM Benchmark Suite , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[12]  Derek Kingston,et al.  Development and flight test of an area monitoring system using Unmanned Aerial Vehicles and unattended ground sensors , 2015, 2015 International Conference on Unmanned Aircraft Systems (ICUAS).

[13]  Conrado Daws Symbolic and Parametric Model Checking of Discrete-Time Markov Chains , 2004, ICTAC.

[14]  Steven Rasmussen,et al.  Automated UAV tasks for search and surveillance , 2016, 2016 IEEE Conference on Control Applications (CCA).

[15]  Taolue Chen,et al.  PRISM-games: A Model Checker for Stochastic Multi-Player Games , 2013, TACAS.

[16]  Michael Kelley,et al.  National imagery interpretation rating system and the probabilities of detection, recognition, and identification , 1997 .

[17]  Yi Li,et al.  iscasMc: A Web-Based Probabilistic Model Checker , 2014, FM.

[18]  Sebastian Junges,et al.  Sequential Convex Programming for the Efficient Verification of Parametric MDPs , 2017, TACAS.

[19]  Nils Jansen,et al.  Fast Debugging of PRISM Models , 2014, ATVA.

[20]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[21]  J. K. Satia,et al.  Markovian Decision Processes with Uncertain Transition Probabilities , 1973, Oper. Res..

[22]  Sebastian Junges,et al.  Safety-Constrained Reinforcement Learning for MDPs , 2015, TACAS.

[23]  Frits W. Vaandrager,et al.  Cost-optimization of the IPv4 zeroconf protocol , 2003, 2003 International Conference on Dependable Systems and Networks, 2003. Proceedings..

[24]  J. Howard Johnson,et al.  Analysis of Image Forming Systems , 1985 .

[25]  Kousha Etessami,et al.  Multi-objective Model Checking of Markov Decision Processes , 2007, TACAS.

[26]  Sebastian Junges,et al.  Parameter Synthesis for Markov Models: Faster Than Ever , 2016, ATVA.

[27]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[28]  Christel Baier,et al.  Principles of model checking , 2008 .

[29]  Hua Chen,et al.  Continuous-time intruder isolation using Unattended Ground Sensors on graphs , 2014, 2014 American Control Conference.

[30]  Christel Baier,et al.  Trade-off analysis meets probabilistic model checking , 2014, CSL-LICS.

[31]  H. Hermanns,et al.  Cost-Optimisation of the IPv 4 Zeroconf Protocol , 2017 .

[32]  Paul M Moser Mathematical Model of FLIR Performance , 1972 .

[33]  Javier García,et al.  A comprehensive survey on safe reinforcement learning , 2015, J. Mach. Learn. Res..

[34]  Marta Z. Kwiatkowska,et al.  Pareto Curves for Probabilistic Model Checking , 2012, ATVA.

[35]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[36]  Sebastian Junges,et al.  Multi-cost Bounded Reachability in MDP , 2018, TACAS.

[37]  Lijun Zhang,et al.  Probabilistic reachability for parametric Markov models , 2010, International Journal on Software Tools for Technology Transfer.