The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans.

Cilia are cellular projections that perform sensory and motile functions. A key ciliary subdomain is the transition zone, which lies between basal body and axoneme. Previous work in Caenorhabditis elegans identified two ciliopathy-associated protein complexes or modules that direct assembly of transition zone Y-links. Here, we identify C. elegans CEP290 as a component of a third module required to form an inner scaffolding structure called the central cylinder. Co-inhibition of all three modules completely disrupted transition zone structure. Surprisingly, axoneme assembly was only mildly perturbed. However, dendrite extension by retrograde migration was strongly impaired, revealing an unexpected role for the transition zone in cell adhesion.

[1]  Boaz Cook,et al.  A Migrating Ciliary Gate Compartmentalizes the Site of Axoneme Assembly in Drosophila Spermatids , 2014, Current Biology.

[2]  Anthony A. Hyman,et al.  Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome , 2014, PLoS Comput. Biol..

[3]  W. Huttner,et al.  Asymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division , 2013, Cell.

[4]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[5]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[6]  H. Zentgraf,et al.  Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis , 2012, The Journal of cell biology.

[7]  T. Giddings,et al.  Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces , 2012, Molecular biology of the cell.

[8]  J. Reiter,et al.  The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization , 2012, EMBO reports.

[9]  W. Huttner,et al.  Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination , 2012, Development.

[10]  Ben Chih,et al.  A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain , 2011, Nature Cell Biology.

[11]  Colin A. Johnson,et al.  TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. , 2011, American journal of human genetics.

[12]  Leonie Kirszenblat,et al.  LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons , 2011, PLoS biology.

[13]  J. García-Verdugo,et al.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition , 2011, Nature Genetics.

[14]  Matthew J. Brauer,et al.  Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways , 2011, Cell.

[15]  Nansheng Chen,et al.  MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis , 2011, The Journal of cell biology.

[16]  J. Rosenbaum,et al.  CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content , 2010, The Journal of cell biology.

[17]  M. E. Hodges,et al.  Reconstructing the evolutionary history of the centriole from protein components , 2010, Journal of Cell Science.

[18]  A. Le Bivic,et al.  Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6 , 2009, Human molecular genetics.

[19]  K. Oegema,et al.  The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. , 2009, Genes & development.

[20]  Bruce F. McEwen,et al.  Protein Architecture of the Human Kinetochore Microtubule Attachment Site , 2009, Cell.

[21]  Shai Shaham,et al.  DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration , 2009, Cell.

[22]  Erik M Jorgensen,et al.  Single-copy insertion of transgenes in Caenorhabditis elegans , 2008, Nature Genetics.

[23]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[24]  B. Yoder,et al.  Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. , 2008, Molecular biology of the cell.

[25]  D. Toomre,et al.  Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells , 2007, The Journal of cell biology.

[26]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[27]  Bianca Habermann,et al.  Centriole assembly requires both centriolar and pericentriolar material proteins. , 2004, Developmental cell.

[28]  J. Scholey,et al.  Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons , 2004, Nature Cell Biology.

[29]  T. Hurd,et al.  Polarity Proteins Control Ciliogenesis via Kinesin Motor Interactions , 2004, Current Biology.

[30]  T. Benzing,et al.  Nephrocystin interacts with Pyk2, p130Cas, and tensin and triggers phosphorylation of Pyk2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Oegema,et al.  Functional Analysis of Kinetochore Assembly in Caenorhabditis elegans , 2001, The Journal of cell biology.

[32]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[33]  T. Ishihara,et al.  A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. , 1999, Development.

[34]  P. Beech,et al.  Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons , 1998, The Journal of cell biology.

[35]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[36]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[37]  S. Sorokin,et al.  CENTRIOLES AND THE FORMATION OF RUDIMENTARY CILIA BY FIBROBLASTS AND SMOOTH MUSCLE CELLS , 1962, The Journal of cell biology.

[38]  H. Omran,et al.  When cilia go bad: cilia defects and ciliopathies , 2008, Nature Reviews Molecular Cell Biology.

[39]  J. Scholey,et al.  The sensory cilia of Caenorhabditis elegans. , 2007, WormBook : the online review of C. elegans biology.

[40]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[41]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.