Twin-arginine-specific protein export in Escherichia coli.

In many prokaryotic organisms, secretory proteins harboring a twin-arginine consensus motif are exported in a fully folded conformation via the twin-arginine translocation (Tat) pathway. In Escherichia coli, Tat involves the three structurally and functionally different membrane proteins TatA, TatB, and TatC. Whereas TatC proteins function in the specific recognition of substrate, TatA might be the major pore-forming subunit.

[1]  G. Sawers,et al.  Constitutive Expression of Escherichia coli tat Genes Indicates an Important Role for the Twin-Arginine Translocase during Aerobic and Anaerobic Growth , 2001, Journal of bacteriology.

[2]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[3]  K. Cline,et al.  Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC–Hcf106 complex before Tha4-dependent transport , 2001, The Journal of cell biology.

[4]  K. Cline,et al.  Functional assembly of thylakoid deltapH-dependent/Tat protein transport pathway components in vitro. , 2003, European journal of biochemistry.

[5]  K. Cline,et al.  Precursors Bind to Specific Sites on Thylakoid Membranes prior to Transport on the Delta pH Protein Translocation System* , 2000, The Journal of Biological Chemistry.

[6]  H. Saibil,et al.  Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. , 2001, European journal of biochemistry.

[7]  M. Vasil,et al.  Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. Santini,et al.  Topology determination and functional analysis of the Escherichia coli TatC protein , 2002, FEBS letters.

[9]  Matthias Müller,et al.  Separate Analysis of Twin-arginine Translocation (Tat)-specific Membrane Binding and Translocation in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[10]  A. Bolhuis,et al.  Protein targeting by the twin-arginine translocation pathway , 2001, Nature Reviews Molecular Cell Biology.

[11]  G. Finazzi,et al.  Thylakoid targeting of Tat passenger proteins shows no ΔpH dependence in vivo , 2003 .

[12]  C. Santini,et al.  Influence of tat mutations on the ribose-binding protein translocation in Escherichia coli. , 2003, Biochemical and biophysical research communications.

[13]  C. Robinson,et al.  Essential Cytoplasmic Domains in the Escherichia coli TatC Protein* , 2002, The Journal of Biological Chemistry.

[14]  Topological studies on the twin-arginine translocase component TatC. , 2004, FEMS microbiology letters.

[15]  B. Berks,et al.  Membrane interactions and self‐association of the TatA and TatB components of the twin‐arginine translocation pathway , 2001, FEBS letters.

[16]  J. Weiner,et al.  Multiple Roles for the Twin Arginine Leader Sequence of Dimethyl Sulfoxide Reductase of Escherichia coli* , 2000, The Journal of Biological Chemistry.

[17]  G. Fichant,et al.  Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. , 2000, Journal of molecular microbiology and biotechnology.

[18]  N. Alder,et al.  Energetics of Protein Transport across Biological Membranes A Study of the Thylakoid ΔpH-Dependent/cpTat Pathway , 2003, Cell.

[19]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[20]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[21]  B. Wallace,et al.  Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. , 2002, Biochemistry.

[22]  R. Daniel,et al.  Export of active green fluorescent protein to the periplasm by the twin‐arginine translocase (Tat) pathway in Escherichia coli , 2001, Molecular microbiology.

[23]  A. Driessen,et al.  The bacterial translocase: a dynamic protein channel complex , 2003, Cellular and Molecular Life Sciences CMLS.

[24]  E. Hartmann,et al.  Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey , 2003, Journal of bacteriology.

[25]  George Georgiou,et al.  Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Long-Fei Wu,et al.  Involvement of the twin‐arginine translocation system in protein secretion via the type II pathway , 2001, The EMBO journal.

[27]  C. Santini,et al.  Dual Topology of the Escherichia coli TatA Protein* , 2004, Journal of Biological Chemistry.

[28]  Frank Sargent,et al.  Behaviour of topological marker proteins targeted to the Tat protein transport pathway , 2002, Molecular microbiology.

[29]  B. Berks,et al.  Truncation Analysis of TatA and TatB Defines the Minimal Functional Units Required for Protein Translocation , 2002, Journal of bacteriology.

[30]  R. Turner,et al.  DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus , 2003, FEBS letters.

[31]  G. Georgiou,et al.  Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway , 2004, Journal of bacteriology.

[32]  C. Santini,et al.  Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide. , 2003, Journal of molecular biology.

[33]  R. Turner,et al.  The Twin-arginine Leader-binding Protein, DmsD, Interacts with the TatB and TatC Subunits of the Escherichia coli Twin-arginine Translocase* , 2003, Journal of Biological Chemistry.

[34]  J. Weiner,et al.  A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins , 1998, Cell.

[35]  Jessica C Kissinger,et al.  Adaptation of protein secretion to extremely high‐salt conditions by extensive use of the twin‐arginine translocation pathway , 2002, Molecular microbiology.

[36]  Matthias Müller,et al.  Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. , 2003, Molecular cell.

[37]  K. Cline,et al.  A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase , 2002, The Journal of cell biology.

[38]  Frank Sargent,et al.  A subset of bacterial inner membrane proteins integrated by the twin‐arginine translocase , 2003, Molecular microbiology.

[39]  K. Cline,et al.  Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. , 2001, Biochimica et biophysica acta.

[40]  Z. Ding,et al.  Agrobacterium tumefaciens Twin-Arginine-Dependent Translocation Is Important for Virulence, Flagellation, and Chemotaxis but Not Type IV Secretion , 2003, Journal of bacteriology.

[41]  C. Santini,et al.  Translocation of Jellyfish Green Fluorescent Protein via the Tat System of Escherichia coli and Change of Its Periplasmic Localization in Response to Osmotic Up-shock* , 2001, The Journal of Biological Chemistry.

[42]  G. Sprenger,et al.  Genetic Analysis of Pathway Specificity during Posttranslational Protein Translocation across the Escherichia coli Plasma Membrane , 2003, Journal of bacteriology.

[43]  F. Sargent,et al.  Assembly of Tat‐dependent [NiFe] hydrogenases: identification of precursor‐binding accessory proteins , 2003, FEBS letters.

[44]  B. Berks,et al.  Escherichia coli Strains Blocked in Tat-Dependent Protein Export Exhibit Pleiotropic Defects in the Cell Envelope , 2001, Journal of bacteriology.

[45]  M. Hecker,et al.  Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. , 2002, Journal of biotechnology.

[46]  N. N. Alder,et al.  Protein transport via the cpTat pathway displays cooperativity and is stimulated by transport‐incompetent substrate , 2003, FEBS letters.

[47]  I. Porcelli,et al.  The Escherichia coli twin‐arginine translocase: conserved residues of TatA and TatB family components involved in protein transport , 2003, FEBS letters.

[48]  A. Bolhuis,et al.  The archaeal twin-arginine translocation pathway. , 2003, Biochemical Society transactions.

[49]  I. Oresnik,et al.  Identification of a twin‐arginine leader‐binding protein , 2001, Molecular microbiology.

[50]  G. Sprenger,et al.  The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. , 1999, European journal of biochemistry.

[51]  B. Berks,et al.  Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. , 2002, Journal of molecular biology.

[52]  G. Sprenger,et al.  Specificity of Signal Peptide Recognition in Tat-Dependent Bacterial Protein Translocation , 2001, Journal of bacteriology.

[53]  T. Palmer,et al.  Role of the Escherichia coli Tat pathway in outer membrane integrity , 2003, Molecular microbiology.

[54]  S. Brink,et al.  Pathway specificity for a ΔpH‐dependent precursor thylakoid lumen protein is governed by a 'sec‐avoidance’ motif in the transfer peptide and a 'sec‐incompatible’ mature protein , 1997, The EMBO journal.

[55]  W. Kühlbrandt,et al.  Consensus structural features of purified bacterial TatABC complexes. , 2003, Journal of molecular biology.

[56]  Matthias Müller,et al.  Co-translocation of a Periplasmic Enzyme Complex by a Hitchhiker Mechanism through the Bacterial Tat Pathway* , 1999, The Journal of Biological Chemistry.

[57]  B. Berks,et al.  TatD Is a Cytoplasmic Protein with DNase Activity , 2000, The Journal of Biological Chemistry.

[58]  M. Saier,et al.  Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system , 2002, Archives of Microbiology.

[59]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.

[60]  B. Ize,et al.  In vivo assessment of the Tat signal peptide specificity in Escherichia coli , 2002, Archives of Microbiology.

[61]  F. Daldal,et al.  Membrane targeting of a folded and cofactor-containing protein. , 2003, European journal of biochemistry.

[62]  C. Santini,et al.  Export of Thermus thermophilus alkaline phosphatase via the twin‐arginine translocation pathway in Escherichia coli , 2001, FEBS letters.

[63]  Frank Sargent,et al.  The Tat protein translocation pathway and its role in microbial physiology. , 2003, Advances in microbial physiology.

[64]  B. Berks,et al.  Functional complexity of the twin‐arginine translocase TatC component revealed by site‐directed mutagenesis , 2002, Molecular microbiology.

[65]  J. Mathers,et al.  Identification of key regions within the Escherichia coli TatAB subunits , 2003, FEBS letters.

[66]  R. Wetzker,et al.  Sequence-specific Binding of prePhoD to Soluble TatAd Indicates Protein-mediated Targeting of the Tat Export in Bacillus subtilis* , 2003, Journal of Biological Chemistry.

[67]  Matthias Müller,et al.  Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. , 2001, Progress in nucleic acid research and molecular biology.

[68]  P. D. de Boer,et al.  The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin‐arginine transport pathway , 2003, Molecular microbiology.

[69]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[70]  A. Bolhuis,et al.  TatB and TatC Form a Functional and Structural Unit of the Twin-arginine Translocase from Escherichia coli * , 2001, The Journal of Biological Chemistry.