Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation

[1]  Xiao Zhi Qiu,et al.  Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging , 2022, Science advances.

[2]  Weigang Ma,et al.  Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials , 2022, Cell Reports Physical Science.

[3]  Baoling Huang,et al.  Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing , 2022, Nature communications.

[4]  J. Ouyang,et al.  Giant Thermoelectric Properties of Ionogels with Cationic Doping , 2022 .

[5]  J. Ouyang,et al.  Significant Enhancement in the Thermoelectric Properties of Ionogels through Solid Network Engineering , 2021, Advanced Functional Materials.

[6]  Bin Chen,et al.  Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions , 2021, Science advances.

[7]  X. Crispin,et al.  Ionic thermoelectric materials and devices , 2021, 2103.04959.

[8]  Gang Chen,et al.  Ionic thermoelectric materials for near ambient temperature energy harvesting , 2021 .

[9]  F. L. Mantia,et al.  Characterising lithium-ion electrolytes via operando Raman microspectroscopy , 2020, Nature Communications.

[10]  G. Portale,et al.  Ionic thermoelectric materials for waste heat harvesting , 2020, Colloid and Polymer Science.

[11]  A. Würger,et al.  On the thermopower of ionic conductor and ionic capacitors , 2020, 2010.12209.

[12]  J. Jeon,et al.  Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect , 2020 .

[13]  Xing Zhang,et al.  Phonon magic angle in two-dimensional puckered homostructures , 2020, 2008.09771.

[14]  Qian Zhang,et al.  Ionic Gelatin Thermoelectric Generators , 2020 .

[15]  Gang Chen,et al.  Giant thermopower of ionic gelatin near room temperature , 2020, Science.

[16]  Eunkyoung Kim,et al.  Chloride transport in conductive polymer films for an n-type thermoelectric platform , 2020, Energy & Environmental Science.

[17]  Ertan Agar,et al.  Probing Li-ion concentration in an operating lithium ion battery using in situ Raman spectroscopy , 2020 .

[18]  S. Lanceros‐Méndez,et al.  Highly Sensitive Humidity Sensor Based on Ionic Liquid–Polymer Composites , 2019, ACS Applied Polymer Materials.

[19]  J. Ouyang,et al.  Flexible Quasi‐Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties , 2019, Advanced Energy Materials.

[20]  Jianwei Song,et al.  Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting , 2019, Nature Materials.

[21]  M. Bier,et al.  Transient response of an electrolyte to a thermal quench. , 2019, Physical review. E.

[22]  T. Walsh,et al.  Predictions of Thermo‐Mechanical Properties of Cross‐Linked Polyacrylamide Hydrogels Using Molecular Simulations , 2019, Advanced Theory and Simulations.

[23]  Peihua Yang,et al.  Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest , 2018, Nature Communications.

[24]  Xiaoxiang Yu,et al.  How Does van der Waals Confinement Enhance Phonon Transport , 2018, 1810.03820.

[25]  Zhiping Xu,et al.  Non-Continuum Intercalated Water Diffusion Explains Fast Permeation through Graphene Oxide Membranes. , 2017, ACS nano.

[26]  X. Crispin,et al.  Ionic thermoelectric paper , 2017 .

[27]  X. Crispin,et al.  Ionic thermoelectric gating organic transistors , 2017, Nature Communications.

[28]  Haiping Fang,et al.  Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals. , 2017, Angewandte Chemie.

[29]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[30]  S. Haigh,et al.  Molecular transport through capillaries made with atomic-scale precision , 2016, Nature.

[31]  X. Crispin,et al.  Ionic thermoelectric supercapacitors , 2016 .

[32]  S. Hardt,et al.  Thermoelectricity in Confined Liquid Electrolytes. , 2015, Physical review letters.

[33]  X. Crispin,et al.  Ionic Seebeck Effect in Conducting Polymers , 2015 .

[34]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[35]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[36]  J. Ferraris,et al.  Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. , 2010, Nano letters.

[37]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[38]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .