When the Schur functor induces a triangle-equivalence between Gorenstein defect categories
暂无分享,去创建一个
[1] Maurice Auslander,et al. Representation Theory of Artin Algebras: Notation , 1995 .
[2] Ming Lu. Some applications of recollements to Gorenstein projective modules , 2014 .
[3] M. Bridger,et al. Stable Module Theory , 1969 .
[4] D. Simson,et al. Elements of the Representation Theory of Associative Algebras , 2007 .
[5] M. Hoshino. Algebras of finite self-injective dimension , 1991 .
[6] Jun-ichi Miyachi,et al. Localization of triangulated categories and derived categories , 1991 .
[7] Xiao-Wu Chen. Singular equivalences induced by homological epimorphisms , 2011, 1107.5922.
[8] James Green,et al. Polynomial representations of GLn , 1980 .
[9] Ragnar-Olaf Buchweitz,et al. Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings , 1986 .
[10] Oana Veliche. Gorenstein projective dimension for complexes , 2004 .
[11] Ming Lu,et al. Recollements of Singularity Categories and Monomorphism Categories , 2015 .
[12] Xiao-Wu Chen. Relative singularity categories and Gorenstein‐projective modules , 2007, 0709.1762.
[13] P. A. Bergh,et al. THE GORENSTEIN DEFECT CATEGORY , 2012, 1202.2876.
[14] J. Asadollahi,et al. On the vanishing of Ext over formal triangular matrix rings , 2006 .
[15] Apostolos Beligiannis. The homological theory of contravariantly finite subcategories:auslander-buchweitz contexts, gorenstein categories and (co-)stabilization , 2000 .
[16] G. Naber,et al. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .
[17] Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements , 2014, 1402.1588.
[18] Apostolos Beligiannis. On algebras of finite Cohen-Macaulay type , 2011, 1305.2311.
[19] L. L. Avramov,et al. Homological dimensions of unbounded complexes , 1991 .
[20] D. Happel. On Gorenstein Algebras , 1991 .
[21] Xiao-Wu Chen. Algebras with radical square zero are either self-injective or CM-free , 2011 .
[22] Henrik Holm,et al. Gorenstein homological dimensions , 2004 .
[23] Pu Zhang. Gorenstein-projective modules and symmetric recollements , 2013 .
[24] Alex Martsinkovsky,et al. Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .
[25] Dmitri Orlov. Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003 .
[26] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[27] Pu Zhang,et al. From CM-finite to CM-free , 2012, 1212.6184.
[28] Chrysostomos Psaroudakis,et al. Homological theory of recollements of abelian categories , 2014 .
[29] Daniel Simson,et al. Techniques of representation theory , 2006 .
[30] Absolute Winkelcodierer,et al. Absolute , 2020, Definitions.
[31] J. Rickard. Derived categories and stable equivalence , 1989 .
[32] Xiao-Wu Chen. Singular Equivalences of Trivial Extensions , 2011, 1110.5955.
[33] Xiao-Wu Chen. Singularity Categories, Schur Functors and Triangular Matrix Rings , 2007, 0706.3638.
[34] Quotient triangulated categories , 2006, math/0601489.
[35] Zhaoyong Huang,et al. Triangulated Equivalences Involving Gorenstein Projective Modules , 2017, Canadian Mathematical Bulletin.