When the Schur functor induces a triangle-equivalence between Gorenstein defect categories

Let $R$ be an Artin algebra and $e$ an idempotent of $R$. Assume that ${\rm Tor}_i^{eRe}(Re,G)=0$ for any $G\in{\rm GProj} eRe$ and $i$ sufficiently large. Necessary and sufficient conditions are given for the Schur functor $S_e$ to induce a triangle-equivalence $\mathbb{D}_{def}(R)\simeq\mathbb{D}_{def}(eRe)$. Combine this with a result of Psaroudakis-Skartsaterhagen-Solberg [29], we provide necessary and sufficient conditions for the singular equivalence $\mathbb{D}_{sg}(R)\simeq\mathbb{D}_{sg}(eRe)$ to restrict to a triangle-equivalence $\underline{{\rm GProj} R}\simeq\underline{{\rm GProj} eRe}$. Applying these to the triangular matrix algebra $T=\left( \begin{array}{cc} A & M \quad 0 & B \end{array} \right)$, corresponding results between candidate categories of $T$ and $A$ (resp. $B$) are obtained. As a consequence, we infer Gorensteinness and CM-freeness of $T$ from those of $A$ (resp. $B$). Some concrete examples are given to indicate one can realise the Gorenstein defect category of a triangular matrix algebra as the singularity category of one of its corner algabras.

[1]  Maurice Auslander,et al.  Representation Theory of Artin Algebras: Notation , 1995 .

[2]  Ming Lu Some applications of recollements to Gorenstein projective modules , 2014 .

[3]  M. Bridger,et al.  Stable Module Theory , 1969 .

[4]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[5]  M. Hoshino Algebras of finite self-injective dimension , 1991 .

[6]  Jun-ichi Miyachi,et al.  Localization of triangulated categories and derived categories , 1991 .

[7]  Xiao-Wu Chen Singular equivalences induced by homological epimorphisms , 2011, 1107.5922.

[8]  James Green,et al.  Polynomial representations of GLn , 1980 .

[9]  Ragnar-Olaf Buchweitz,et al.  Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings , 1986 .

[10]  Oana Veliche Gorenstein projective dimension for complexes , 2004 .

[11]  Ming Lu,et al.  Recollements of Singularity Categories and Monomorphism Categories , 2015 .

[12]  Xiao-Wu Chen Relative singularity categories and Gorenstein‐projective modules , 2007, 0709.1762.

[13]  P. A. Bergh,et al.  THE GORENSTEIN DEFECT CATEGORY , 2012, 1202.2876.

[14]  J. Asadollahi,et al.  On the vanishing of Ext over formal triangular matrix rings , 2006 .

[15]  Apostolos Beligiannis The homological theory of contravariantly finite subcategories:auslander-buchweitz contexts, gorenstein categories and (co-)stabilization , 2000 .

[16]  G. Naber,et al.  Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .

[17]  Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements , 2014, 1402.1588.

[18]  Apostolos Beligiannis On algebras of finite Cohen-Macaulay type , 2011, 1305.2311.

[19]  L. L. Avramov,et al.  Homological dimensions of unbounded complexes , 1991 .

[20]  D. Happel On Gorenstein Algebras , 1991 .

[21]  Xiao-Wu Chen Algebras with radical square zero are either self-injective or CM-free , 2011 .

[22]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[23]  Pu Zhang Gorenstein-projective modules and symmetric recollements , 2013 .

[24]  Alex Martsinkovsky,et al.  Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .

[25]  Dmitri Orlov Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003 .

[26]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[27]  Pu Zhang,et al.  From CM-finite to CM-free , 2012, 1212.6184.

[28]  Chrysostomos Psaroudakis,et al.  Homological theory of recollements of abelian categories , 2014 .

[29]  Daniel Simson,et al.  Techniques of representation theory , 2006 .

[30]  Absolute Winkelcodierer,et al.  Absolute , 2020, Definitions.

[31]  J. Rickard Derived categories and stable equivalence , 1989 .

[32]  Xiao-Wu Chen Singular Equivalences of Trivial Extensions , 2011, 1110.5955.

[33]  Xiao-Wu Chen Singularity Categories, Schur Functors and Triangular Matrix Rings , 2007, 0706.3638.

[34]  Quotient triangulated categories , 2006, math/0601489.

[35]  Zhaoyong Huang,et al.  Triangulated Equivalences Involving Gorenstein Projective Modules , 2017, Canadian Mathematical Bulletin.