In this Letter, we investigate the transition of the well-known Fabry-Perot (FP) and antiresonant (AR) mechanisms via a single-mode fiber (SMF)-capillary-SMF structure. The critical length for this transition is analytically found as a linear relation with the capillary inner diameter based on the ray optic method, which shows the agreement with both numerical simulations and experiments. Evolutions of the transmission and reflection spectra verify that FP and AR mechanisms are closely related to the critical length. An observed AR envelope modulated by the FP mechanism in the reflection strengthens gradually with the increase of the capillary length, which is expected to be a novel method for potential applications in multi-parameters sensing because of its combined mechanisms. The transition and critical lengths can be also found and explained using the same method in other types of AR fibers or waveguides with a hollow core.