The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia

Abstract Cognitive impairment, a core feature of schizophrenia, has been suggested to arise from a disturbance of gamma oscillations that is due to decreased neurotransmission from the parvalbumin (PV) subtype of interneurons. Indeed, PV interneurons have uniquely fast membrane and synaptic properties that are crucially important for network functions such as feedforward inhibition or gamma oscillations. The causes leading to impairment of PV neurotransmission in schizophrenia are still under investigation. Interestingly, NMDA receptors (NMDARs) antagonism results in schizophrenia-like symptoms in healthy adults. Additionally, systemic NMDAR antagonist administration increases prefrontal cortex pyramidal cell firing, apparently by producing disinhibition, and repeated exposure to NMDA antagonists leads to changes in the GABAergic markers that mimic the impairments found in schizophrenia. Based on these findings, PV neuron deficits in schizophrenia have been proposed to be secondary to (NMDAR) hypofunction at glutamatergic synapses onto these cells. However, NMDARs generate long-lasting postsynaptic currents that result in prolonged depolarization of the postsynaptic cells, a property inconsistent with the role of PV cells in network dynamics. Here, we review evidence leading to the conclusion that cortical disinhibition and GABAergic impairment produced by NMDAR antagonists are unlikely to be mediated via NMDARs at glutamatergic synapses onto mature cortical PV neurons.

[1]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[2]  G. Reynolds,et al.  Disturbances in social interaction occur along with pathophysiological deficits following sub-chronic phencyclidine administration in the rat , 2008, Behavioural Brain Research.

[3]  G. González-Burgos,et al.  Perisomatic inhibition and cortical circuit dysfunction in schizophrenia , 2011, Current Opinion in Neurobiology.

[4]  L. Benardo,et al.  Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. , 1995, Journal of neurophysiology.

[5]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[6]  Eytan Domany,et al.  Models of Neural Networks I , 1991 .

[7]  Richie Poulton,et al.  Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. , 2010, The American journal of psychiatry.

[8]  D. Jeste,et al.  Stability and course of neuropsychological deficits in schizophrenia. , 2001, Archives of general psychiatry.

[9]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[10]  W. Singer,et al.  Rapid feature selective neuronal synchronization through correlated latency shifting , 2001, Nature Neuroscience.

[11]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[12]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[13]  E. Walker,et al.  Neuromotor precursors of schizophrenia. , 1994, Schizophrenia bulletin.

[14]  B. Morris,et al.  Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain , 2002, Synapse.

[15]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[16]  K. Nakazawa,et al.  GABAergic interneuron origin of schizophrenia pathophysiology , 2012, Neuropharmacology.

[17]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[18]  Li Chen,et al.  Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation , 1992, Nature.

[19]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[20]  E. Quinlan,et al.  Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex , 2006, The Journal of Neuroscience.

[21]  G. Barrionuevo,et al.  Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. , 2001, Journal of neurophysiology.

[22]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[23]  Karrie R. Jones,et al.  NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[25]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Klosterkötter,et al.  Diagnosing schizophrenia in the initial prodromal phase , 2000, Schizophrenia Research.

[27]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[28]  D. Drubach A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2009 .

[29]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[30]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[31]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[32]  J. Krystal,et al.  Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. , 1994, Archives of general psychiatry.

[33]  Wenjun Gao,et al.  Development of calcium‐permeable AMPA receptors and their correlation with NMDA receptors in fast‐spiking interneurons of rat prefrontal cortex , 2010, The Journal of physiology.

[34]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[35]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[36]  M. Poo,et al.  Spike-Timing-Dependent Plasticity of Neocortical Excitatory Synapses on Inhibitory Interneurons Depends on Target Cell Type , 2007, The Journal of Neuroscience.

[37]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[38]  C. Tanaka,et al.  [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. , 1987, Life sciences.

[39]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[40]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[41]  D. Watanabe,et al.  Glutamate receptors: brain function and signal transduction 1 Published on the World Wide Web on 21 October 1997. 1 , 1998, Brain Research Reviews.

[42]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[43]  David A Lewis,et al.  Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia , 2011, The Journal of Neuroscience.

[44]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[45]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[46]  John G R Jefferys,et al.  Comparison between spontaneous and kainate‐induced gamma oscillations in the mouse hippocampus in vitro , 2009, The European journal of neuroscience.

[47]  D. Choi Ionic dependence of glutamate neurotoxicity , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[49]  E. Jones,et al.  The role of afferent activity in the maintenance of primate neocorticalfunction. , 1990, The Journal of experimental biology.

[50]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[51]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[52]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[53]  Jonathan D. Cohen,et al.  Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. , 2005, American Journal of Psychiatry.

[54]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[55]  P. O’Donnell,et al.  Gamma and Delta Neural Oscillations and Association with Clinical Symptoms under Subanesthetic Ketamine , 2010, Neuropsychopharmacology.

[56]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[57]  L. Iversen,et al.  GLUTAMIC-ACID DECARBOXYLASE IN SCHIZOPHRENIA , 1978, The Lancet.

[58]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[59]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[60]  Y. Yanagawa,et al.  Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits , 2006, The Journal of Neuroscience.

[61]  David A Lewis,et al.  Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. , 2011, Schizophrenia bulletin.

[62]  David A Lewis,et al.  Dopamine D1 receptor activation regulates sodium channel‐dependent EPSP amplification in rat prefrontal cortex pyramidal neurons , 2007, The Journal of physiology.

[63]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[64]  E. Jones,et al.  Differential and Time-Dependent Changes in Gene Expression for Type II Calcium/Calmodulin-Dependent Protein Kinase, 67 kDa Glutamic Acid Decarboxylase, and Glutamate Receptor Subunits in Tetanus Toxin-Induced Focal Epilepsy , 1997, The Journal of Neuroscience.

[65]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[66]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[67]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[68]  D. Javitt,et al.  Recent advances in the phencyclidine model of schizophrenia. , 1991, The American journal of psychiatry.

[69]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[70]  I. Feinberg,et al.  Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? , 1982, Journal of psychiatric research.

[71]  Dimitri M. Kullmann,et al.  LTP and LTD in cortical GABAergic interneurons: Emerging rules and roles , 2011, Neuropharmacology.

[72]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[73]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[74]  J. Coyle,et al.  Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis , 2006, Cellular and Molecular Neurobiology.

[75]  C. Garner,et al.  Mechanisms of vertebrate synaptogenesis. , 2005, Annual review of neuroscience.

[76]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[77]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[78]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[79]  H. Bading,et al.  Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders , 2010, Nature Reviews Neuroscience.

[80]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[81]  C. Houser,et al.  Up‐regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[82]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[83]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[84]  D. Lewis,et al.  Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia , 2010, Current psychiatry reports.

[85]  A. Thomson,et al.  N-methylaspartate receptors mediate epileptiform activity evoked in some, but not all, conditions in rat neocortical slices , 1986, Neuroscience.

[86]  J. Coyle,et al.  Failure of NMDA receptor hypofunction to induce a pathological reduction in PV-positive GABAergic cell markers , 2011, Neuroscience Letters.

[87]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[89]  Court Hull,et al.  Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs , 2009, The Journal of Neuroscience.

[90]  S. Anderson,et al.  Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. , 1994, Journal of psychiatric research.

[91]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[92]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[93]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[94]  Tamara Hershey,et al.  Ketamine-Induced NMDA Receptor Hypofunction as a Model of Memory Impairment and Psychosis , 1999, Neuropsychopharmacology.

[95]  S. Siris,et al.  Implications of normal brain development for the pathogenesis of schizophrenia. , 1988, Archives of general psychiatry.

[96]  R. Traub,et al.  Neuronal fast oscillations as a target site for psychoactive drugs. , 2000, Pharmacology & therapeutics.

[97]  R. Nicoll,et al.  Analysis of excitatory synaptic action in pyramidal cells using whole‐cell recording from rat hippocampal slices. , 1990, The Journal of physiology.

[98]  M. Hasselmo,et al.  NMDA-dependent modulation of CA1 local circuit inhibition , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  Attila I Gulyás,et al.  Convergence of excitatory and inhibitory inputs onto CCK‐containing basket cells in the CA1 area of the rat hippocampus , 2004, The European journal of neuroscience.

[100]  D. Javitt When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. , 2009, Annual review of clinical psychology.

[101]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[103]  Fiona E. N. LeBeau,et al.  Region-Specific Reduction in Entorhinal Gamma Oscillations and Parvalbumin-Immunoreactive Neurons in Animal Models of Psychiatric Illness , 2006, The Journal of Neuroscience.

[104]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  H. Man GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? , 2011, Current Opinion in Neurobiology.

[106]  H. M. Morris,et al.  Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia , 2008, Molecular Psychiatry.

[107]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[108]  M. Behrens,et al.  Interleukin-6 Mediates the Increase in NADPH-Oxidase in the Ketamine Model of Schizophrenia , 2008, The Journal of Neuroscience.

[109]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[110]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[111]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[112]  Marco Capogna,et al.  GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input. , 2007, Cerebral cortex.

[113]  Jared X. Van Snellenberg,et al.  Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. , 2006, Neuropsychology.

[114]  R. Traub,et al.  Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. , 2008, Schizophrenia bulletin.

[115]  R. Roth,et al.  Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex , 2007, Psychopharmacology.

[116]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[117]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[118]  G. Marks,et al.  Increased γ- and Decreased δ-Oscillations in a Mouse Deficient for a Potassium Channel Expressed in Fast-Spiking Interneurons , 1999 .

[119]  Michael B. Mayhew,et al.  Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression , 2007, Molecular Psychiatry.

[120]  Kevin L Quick,et al.  Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase , 2007, Science.

[121]  Pat Levitt,et al.  Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex , 2000, Neuron.

[122]  K. Pajer,et al.  Clinical care update schizophrenia and the life cycle , 1995, Community Mental Health Journal.

[123]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[124]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[125]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[126]  Wenjun Gao,et al.  Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex , 2009, Neuropsychopharmacology.

[127]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[128]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[129]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[130]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[131]  M. Huntsman,et al.  Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. , 1994, Cerebral cortex.

[132]  Norbert Hájos,et al.  Network mechanisms of gamma oscillations in the CA3 region of the hippocampus , 2009, Neural Networks.

[133]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[134]  Charles Tator,et al.  Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[136]  Cameron S Carter,et al.  Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning , 2011, Neuropsychopharmacology.

[137]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[138]  K. Pajer,et al.  Schizophrenia and the life cycle. , 1995, Community mental health journal.

[139]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[140]  D. Pinault,et al.  NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness , 2009, PloS one.

[141]  M. Webster,et al.  Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. , 2010, Journal of psychiatric research.

[142]  D R Medoff,et al.  Ketamine activates psychosis and alters limbic blood flow in schizophrenia , 1995, Neuroreport.

[143]  F. Benes,et al.  Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects , 1996, Neuroscience.

[144]  Andreas Meyer-Lindenberg,et al.  From maps to mechanisms through neuroimaging of schizophrenia , 2010, Nature.

[145]  G. Westbrook,et al.  Modulation of excitatory synaptic transmission by glycine and zinc in cultures of mouse hippocampal neurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[146]  D. Javitt,et al.  Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia , 2008, Trends in Neurosciences.

[147]  R. Yuste,et al.  The Enigmatic Function of Chandelier Cells , 2010, Front. Neurosci..

[148]  J. Ragland,et al.  Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: a longitudinal study , 1997, Schizophrenia Research.

[149]  A. Sampson,et al.  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. , 2011, The American journal of psychiatry.

[150]  Yukihiro Noda,et al.  Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment , 2007, Neurochemistry International.

[151]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[152]  R. O’Reilly Biologically Based Computational Models of High-Level Cognition , 2006, Science.

[153]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[154]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[155]  T J Sejnowski,et al.  Computational model of carbachol‐induced delta, theta, and gamma oscillations in the hippocampus , 2001, Hippocampus.

[156]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[157]  Miles A Whittington,et al.  Fast network oscillations induced by potassium transients in the rat hippocampus in vitro , 2002, The Journal of physiology.

[158]  Robert W. McCarley,et al.  A Pharmacological Model for Psychosis Based on N-methyl-D-aspartate Receptor Hypofunction: Molecular, Cellular, Functional and Behavioral Abnormalities , 2006, Biological Psychiatry.

[159]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[160]  A. Sampson,et al.  Relationship of Brain-Derived Neurotrophic Factor and Its Receptor TrkB to Altered Inhibitory Prefrontal Circuitry in Schizophrenia , 2005, The Journal of Neuroscience.

[161]  Germán Mato,et al.  Synchrony in Heterogeneous Networks of Spiking Neurons , 2000, Neural Computation.

[162]  W. Singer,et al.  The Role of Neuronal Synchronization in Response Selection: A Biologically Plausible Theory of Structured Representations in the Visual Cortex , 1996, Journal of Cognitive Neuroscience.

[163]  Hannah Monyer,et al.  NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory , 2010, Neuron.

[164]  D. Weinberger Implications of normal brain development for the pathogenesis of schizophrenia. , 1987, Archives of general psychiatry.

[165]  Raymond Dingledine,et al.  Control of Feedforward Dendritic Inhibition by NMDA Receptor-Dependent Spike Timing in Hippocampal Interneurons , 2002, The Journal of Neuroscience.

[166]  J. Glausier,et al.  Selective Pyramidal Cell Reduction of GABAA Receptor α1 Subunit Messenger RNA Expression in Schizophrenia , 2011, Neuropsychopharmacology.

[167]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[168]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[169]  S. Akbarian MOLECULAR DETERMINANTS OF DYSREGULATED GABAERGIC GENE EXPRESSION IN THE PREFRONTAL CORTEX OF SUBJECTS WITH SCHIZOPHRENIA , 2010, Schizophrenia Research.

[170]  S. Cull-Candy,et al.  Role of Distinct NMDA Receptor Subtypes at Central Synapses , 2004, Science's STKE.

[171]  J. Deakin,et al.  Reduced GABA uptake sites in the temporal lobe in schizophrenia , 1989, Neuroscience Letters.

[172]  I. Soltesz Diversity in the Neuronal Machine: Order and Variability in Interneuronal Microcircuits , 2005 .

[173]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[174]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[175]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[176]  J. Seamans,et al.  Losing inhibition with ketamine. , 2008, Nature chemical biology.

[177]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[178]  G. Mengod,et al.  Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia , 2011, Psychopharmacology.

[179]  R. Malenka,et al.  AMPA RECEPTOR TRAFFICKING AND , 2002 .

[180]  W. Singer,et al.  The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. , 2011, Schizophrenia bulletin.

[181]  David A Lewis,et al.  Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. , 2008, The American journal of psychiatry.

[182]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[183]  S. Akbarian,et al.  Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders , 2006, Brain Research Reviews.

[184]  Peter Somogyi,et al.  Cell Type-Specific Long-Term Plasticity at Glutamatergic Synapses onto Hippocampal Interneurons Expressing either Parvalbumin or CB1 Cannabinoid Receptor , 2010, The Journal of Neuroscience.

[185]  T. Kaneko,et al.  Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia , 2009, BMC psychiatry.

[186]  J. Gogos,et al.  Cognition in mouse models of schizophrenia susceptibility genes. , 2010, Schizophrenia bulletin.

[187]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[188]  B. Morris,et al.  Induction of Metabolic Hypofunction and Neurochemical Deficits after Chronic Intermittent Exposure to Phencyclidine: Differential Modulation by Antipsychotic Drugs , 2003, Neuropsychopharmacology.

[189]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[190]  David A Lewis,et al.  The chandelier neuron in schizophrenia , 2011, Developmental neurobiology.

[191]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[192]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[193]  D. Pinault,et al.  N-Methyl d-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant γ Oscillations in the Rat Neocortex , 2008, Biological Psychiatry.

[194]  T. Bártfai,et al.  A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons , 2006, The Journal of Neuroscience.

[195]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[196]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[197]  G. González-Burgos,et al.  Pathophysiologically based treatment interventions in schizophrenia , 2006, Nature Medicine.

[198]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[199]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[200]  Jane S. Paulsen,et al.  Generalized cognitive deficits in schizophrenia: a study of first-episode patients. , 1999, Archives of general psychiatry.

[201]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[202]  T. Tsumoto,et al.  Metabotropic Glutamate Receptor Type 5-Dependent Long-Term Potentiation of Excitatory Synapses on Fast-Spiking GABAergic Neurons in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[203]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.