Forest variable estimation from fusion of SAR and multispectral optical data

Radar and optical remote sensing data are used in a unified algorithm to estimate forest variables. The study site is the H. J. Andrews experimental forest in Oregon, which has significant topography and several mature and old-growth conifer stands with biomass values sometimes exceeding 1000 tons/ha. Polarimetric multifrequency Airborne Synthetic Aperture Radar (AIRSAR) backscatter, interferometric C-band Topographic Synthetic Aperture Radar (TOPSAR) coherence, and multispectral Landsat Thematic Mapper (TM) digital numbers are used in a regression analysis that relates them to forest variable measurements on the ground. Parametric expressions are derived and used to estimate the same variables(s) at other locations from the combination of AIRSAR and TM data. It is shown that the estimation accuracy is significantly improved when the radar and optical data are used in combination compared to estimating the same variable from a single data type alone.

[1]  Mahta Moghaddam,et al.  Monitoring tree moisture using an estimation algorithm applied to SAR data from BOREAS , 1999, IEEE Trans. Geosci. Remote. Sens..

[2]  S. Running,et al.  Relationship of thematic mapper simulator data to leaf area index , 1987 .

[3]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[4]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .

[5]  K. Jon Ranson,et al.  Radar modeling of a boreal forest , 1991, IEEE Trans. Geosci. Remote. Sens..

[6]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[7]  M. Jakubauskas Thematic Mapper characterization of lodgepole pine seral stages in Yellowstone National Park, USA , 1996 .

[8]  Mark E. Harmon,et al.  Coarse Woody Debris Dynamics in Two Old-Growth Ecosystems , 1991 .

[9]  Douglas S. Powell,et al.  Forest statistics of the United States, 1987. , 1989 .

[10]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[11]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[12]  Mahta Moghaddam,et al.  Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[13]  J. Clevers Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture , 1989 .

[14]  David O. Wallin,et al.  Two Decades of Carbon Flux from Forests of the Pacific Northwest , 1996 .

[15]  Jerry F. Franklin,et al.  A preliminary classification of forest communities in the central portion of the Western Cascades in Oregon. , 1974 .

[16]  Barry D Ganapol,et al.  LCM2: A coupled leaf/canopy radiative transfer model , 1999 .

[17]  Jakob J. van Zyl,et al.  The effect of topography on radar scattering from vegetated areas , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  R. H. Haas,et al.  Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands , 1993 .

[19]  C. C. Grier,et al.  Old‐Growth Pseudotsuga menziesii Communities of a Western Oregon Watershed: Biomass Distribution and Production Budgets , 1977 .

[20]  F. Gemmell,et al.  Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site , 1995 .

[21]  Yong Wang,et al.  Please Scroll down for Article International Journal of Remote Sensing the Effects of Changes in Forest Biomass on Radar Backscatter from Tree Canopies , 2022 .

[22]  L. C. Kuiper,et al.  The structure of natural Douglas-fir forests in Western Washington and Western Oregon. , 1988 .

[23]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[24]  J. Michaelsen,et al.  Estimating grassland biomass and leaf area index using ground and satellite data , 1994 .

[25]  R. Myneni,et al.  Radiative transfer in vegetation canopies with anisotropic scattering , 1988 .

[26]  W. Ripple,et al.  A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HRV multispectral data for estimating coniferous forest volume , 1991 .

[27]  J. Marshall,et al.  Comparison of Methods of Estimating Leaf‐Area Index In Old‐Growth Douglas‐Fir , 1986 .

[28]  Jennifer L. Dungan,et al.  Fusion of AIRSAR and TM data for parameter classification and estimation in dense and hilly forests , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[29]  Fawwaz T. Ulaby,et al.  Land-cover classification and estimation of terrain attributes using synthetic aperture radar , 1995 .

[30]  Stephen L. Durden,et al.  Modeling and observation of the radar polarization signature of forested areas , 1989 .

[31]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[32]  M. Moghaddam,et al.  Estimating subcanopy soil moisture with radar. , 2000 .

[33]  Guoqing Sun,et al.  Mapping of boreal forest biomass from spaceborne synthetic aperture radar , 1997 .

[34]  Fraser Gemmell,et al.  Utility of Reflectance Model Inversion Versus Two Spectral Indices for Estimating Biophysical Characteristics in a Boreal Forest Test Site , 1999 .

[35]  Yong Wang,et al.  Santa Barbara microwave backscattering model for woodlands , 1993 .

[36]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[37]  Roger H. Lang,et al.  Electromagnetic Backscattering from a Layer of Vegetation: A Discrete Approach , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[38]  F. M. Danson,et al.  Preliminary evaluation of the relationships between SPOT-1 HRV data and forest stand parameters , 1987 .