Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) and tractography approaches are the only tools that can be utilized to estimate structural connections between different brain areas, non-invasively and in-vivo. A first step that is commonly utilized in these techniques includes the estimation of the underlying fibre orientations and their uncertainty in each voxel of the image. A popular method to achieve that is implemented in the FSL software, provided by the FMRIB Centre at University of Oxford, and is based on a Bayesian inference framework. Despite its popularity, the approach has high computational demands, taking normally more than 24 hours for analyzing a single subject. In this paper, we present a GPU-optimized version of the FSL tool that estimates fibre orientations. We report up to 85x of speed-up factor between the GPU and its sequential counterpart CPU-based version.

[1]  Yu Wang,et al.  Probabilistic Brain Fiber Tractography on GPUs , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[2]  Stamatios N. Sotiropoulos,et al.  MR Diffusion Tractography , 2009 .

[3]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[4]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[5]  Martyn Amos,et al.  Enhancing data parallelism for Ant Colony Optimization on GPUs , 2013, J. Parallel Distributed Comput..

[6]  Ross T. Whitaker,et al.  Interactive Visualization of Volumetric White Matter Connectivity in DT-MRI Using a Parallel-Hardware Hamilton-Jacobi Solver , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[8]  Justin P. Haldar,et al.  Accelerating advanced MRI reconstructions on GPUs , 2008, J. Parallel Distributed Comput..

[9]  William J. Dally,et al.  GPUs and the Future of Parallel Computing , 2011, IEEE Micro.

[10]  Firas Hamze,et al.  A Performance Comparison of CUDA and OpenCL , 2010, ArXiv.

[11]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[12]  Tom R. Halfhill NVIDIA's Next-Generation CUDA Compute and Graphics Architecture, Code-Named Fermi, Adds Muscle for Parallel Processing , 2009 .

[13]  Alex Fit-Florea,et al.  Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs , 2011 .

[14]  Eros Comunello,et al.  Performing Real-Time Interactive Fiber Tracking , 2011, Journal of Digital Imaging.

[15]  Daniel C. Alexander,et al.  Multiple Fibers: Beyond the Diffusion Tensor , 2013 .

[16]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[17]  James Demmel,et al.  Fast $\ell_1$ -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime , 2012, IEEE Transactions on Medical Imaging.

[18]  Tobias Schaeffter,et al.  Accelerating the Nonequispaced Fast Fourier Transform on Commodity Graphics Hardware , 2008, IEEE Transactions on Medical Imaging.

[19]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[20]  Erik Lindholm,et al.  NVIDIA Tesla: A Unified Graphics and Computing Architecture , 2008, IEEE Micro.

[21]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[23]  Saad Jbabdi,et al.  Chapter 15 – MR Diffusion Tractography , 2009 .

[24]  Daniel C. Alexander,et al.  Chapter 4 – Multiple Fibers: Beyond the Diffusion Tensor , 2009 .

[25]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[26]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[27]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[28]  Martyn Amos,et al.  Parallelization strategies for ant colony optimisation on GPUs , 2011, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.

[29]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[30]  Dafydd Gibbon,et al.  1 User’s guide , 1998 .

[31]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[32]  Wen-mei W. Hwu,et al.  GPU computing gems , 2011 .

[33]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[34]  Wen-mei W. Hwu,et al.  GPU Computing Gems Emerald Edition , 2011 .

[35]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[36]  Jieru Chi,et al.  GPU-Accelerated FDTD Modeling of Radio-Frequency Field–Tissue Interactions in High-Field MRI , 2011, IEEE Transactions on Biomedical Engineering.

[37]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[38]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[39]  Heinz-Otto Peitgen,et al.  A GPU-based fiber tracking framework using geometry shaders , 2009, Medical Imaging.

[40]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[41]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[42]  Yao Zhang,et al.  Parallel Computing Experiences with CUDA , 2008, IEEE Micro.

[43]  Chris A Clark,et al.  White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? , 2003, NeuroImage.

[44]  Vid Petrovic,et al.  Visualizing Whole-Brain DTI Tractography with GPU-based Tuboids and LoD Management , 2007, IEEE Transactions on Visualization and Computer Graphics.

[45]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[46]  Kevin Skadron,et al.  A performance study of general-purpose applications on graphics processors using CUDA , 2008, J. Parallel Distributed Comput..

[47]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[48]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[49]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[50]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.