Dynamic generation of personalized hybrid recommender systems

The problem of information overload has been a relevant and active research topic for the past twenty years. Since then, numerous algorithms and recommendation approaches have been proposed, which gives rise to a new type of problem: recommendation algorithm overload. Although hybrid recommendation techniques, which combine the strengths of individual recommenders, have become well-accepted, the procedure of building and tuning a hybrid recommender is still a tedious and time-consuming process. In our work, we focus on dynamically building personalized hybrid recommender systems on an individual user basis. By means of a dynamic online learning strategy we combine the most appropriate recommendation algorithms for a user based on realtime relevance feedback. Learning effectiveness of genetic algorithms, machine learning techniques and other optimization approaches will be studied in both an offline and online setting.

[1]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[2]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[3]  Michail Vlachos,et al.  Graph Embeddings for Movie Visualization and Recommendation , 2012 .

[4]  Enrique Herrera-Viedma,et al.  A recommender system for research resources based on fuzzy linguistic modeling , 2009, Expert Syst. Appl..

[5]  Li Chen,et al.  Critiquing-based recommenders: survey and emerging trends , 2012, User Modeling and User-Adapted Interaction.

[6]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[7]  Yang Song,et al.  Automatic tag recommendation algorithms for social recommender systems , 2011, ACM Trans. Web.

[8]  Razvan C. Bunescu,et al.  Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques , 2003, Third IEEE International Conference on Data Mining.

[9]  Alexander Tuzhilin,et al.  The effect of context-aware recommendations on customer purchasing behavior and trust , 2011, RecSys '11.

[10]  Toon De Pessemier,et al.  Content-based Recommendation Algorithms on the Hadoop MapReduce Framework , 2011, WEBIST.

[11]  Shlomo Berkovsky,et al.  Group-based recipe recommendations: analysis of data aggregation strategies , 2010, RecSys '10.

[12]  Joseph Sill,et al.  Feature-Weighted Linear Stacking , 2009, ArXiv.

[13]  Gail E. Kaiser,et al.  Towards Using Cached Data Mining for Large Scale Recommender Systems , 2013 .

[14]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[15]  Ralf Klamma,et al.  You Never Walk Alone: Recommending Academic Events Based on Social Network Analysis , 2009, Complex.

[16]  Pádraig Cunningham,et al.  An on-line evaluation framework for recommender systems , 2002 .

[17]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[18]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[19]  Li Chen,et al.  A user-centric evaluation framework for recommender systems , 2011, RecSys '11.

[20]  Muhammad Umar Qasim,et al.  Active caching for recommender systems , 2011 .

[21]  Tim Hussein,et al.  Hybreed: A software framework for developing context-aware hybrid recommender systems , 2012, User Modeling and User-Adapted Interaction.

[22]  Tobias Höllerer,et al.  TasteWeights: a visual interactive hybrid recommender system , 2012, RecSys.

[23]  Xinlong Bao,et al.  Stacking recommendation engines with additional meta-features , 2009, RecSys '09.

[24]  Kunle Olukotun,et al.  Multicore Processors and Systems , 2009, Integrated Circuits and Systems.

[25]  Jesús Bobadilla,et al.  A new collaborative filtering metric that improves the behavior of recommender systems , 2010, Knowl. Based Syst..

[26]  Domonkos Tikk,et al.  Scalable Collaborative Filtering Approaches for Large Recommender Systems , 2009, J. Mach. Learn. Res..

[27]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[28]  Chris Cornelis,et al.  One-and-only item recommendation with fuzzy logic techniques , 2007, Inf. Sci..

[29]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[30]  Von-Wun Soo,et al.  A personalized restaurant recommender agent for mobile e-service , 2004, IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004.

[31]  John Riedl,et al.  An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms , 2002, Information Retrieval.

[32]  Alejandro Bellogín Kouki Performance prediction and evaluation in recommender systems: An information retrieval perspective , 2012 .

[33]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[34]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[35]  Alejandro Bellogín,et al.  Predicting performance in recommender systems , 2011, RecSys '11.

[36]  Tobias Höllerer,et al.  TopicLens : An Interactive Recommender System based on Topical and Social Connections , 2012 .

[37]  Jie Lu,et al.  Scaling-Up Item-Based Collaborative Filtering Recommendation Algorithm Based on Hadoop , 2011, 2011 IEEE World Congress on Services.

[38]  Binzhou Xia,et al.  Tighter bounds of the First Fit algorithm for the bin-packing problem , 2010, Discret. Appl. Math..

[39]  Ye Myat Thein,et al.  A Knowledge-based Framework for Development of Personalized Food Recommender System , 2010 .

[40]  Daniel Lemire,et al.  Implementing a Rating-Based Item-to-Item Recommender System in PHP/SQL , 2005 .

[41]  Martin Ester,et al.  CrimeWalker: a recommendation model for suspect investigation , 2011, RecSys '11.

[42]  Wolfgang Wörndl,et al.  A Hybrid Recommender System for Context-aware Recommendations of Mobile Applications , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[43]  AdomaviciusGediminas,et al.  Toward the Next Generation of Recommender Systems , 2005 .

[44]  Pedro Gómez-Gasquet,et al.  A Makespan Minimization in an m-Stage Flow Shop Lot Streaming with Sequence Dependent Setup Times: MILP Model and Experimental Approach , 2014 .

[45]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[46]  Matthew Brand,et al.  Fast Online SVD Revisions for Lightweight Recommender Systems , 2003, SDM.

[47]  Mark van Setten,et al.  Supporting People in Finding Information: Hybrid Recommender Systems and Goal-Based Structuring , 2005 .

[48]  Danielle Hyunsook Lee,et al.  PITTCULT: trust-based cultural event recommender , 2008, RecSys '08.

[49]  Franca Garzotto,et al.  Comparative evaluation of recommender system quality , 2011, CHI Extended Abstracts.

[50]  G. Karypis,et al.  Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems , 2002 .

[51]  F. Maxwell Harper,et al.  An Economic Model of User Rating in an Online Recommender System , 2005, User Modeling.

[52]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[53]  Lars Schmidt-Thieme,et al.  MyMediaLite: a free recommender system library , 2011, RecSys '11.

[54]  Pearl Pu,et al.  Eye-tracking product recommenders' usage , 2010, RecSys '10.

[55]  Jiahui Liu,et al.  Personalized news recommendation based on click behavior , 2010, IUI '10.

[56]  Yehuda Koren,et al.  Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy , 2011, RecSys '11.

[57]  A. Colman,et al.  Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. , 2000, Acta psychologica.

[58]  Nava Tintarev,et al.  Explanations of recommendations , 2007, RecSys '07.

[59]  Alfred Kobsa User Modeling and User-Adapted Interaction , 2005, User Modeling and User-Adapted Interaction.

[60]  Arjen P. de Vries,et al.  Artist Popularity: Do Web and Social Music Services Agree? , 2021, ICWSM.

[61]  Toon De Pessemier,et al.  A user-centric evaluation of recommender algorithms for an event recommendation system , 2011, RecSys 2011.

[62]  Tobias Höllerer,et al.  SmallWorlds: Visualizing Social Recommendations , 2010, Comput. Graph. Forum.

[63]  Jie Lu,et al.  A Framework for Delivering Personalized e-Government Tourism Services , 2010, WEBIST.

[64]  Sahin Albayrak,et al.  User-centric evaluation of a K-furthest neighbor collaborative filtering recommender algorithm , 2013, CSCW.

[65]  Martin Szomszor,et al.  Comparison of implicit and explicit feedback from an online music recommendation service , 2010, HetRec '10.

[66]  Yu He,et al.  The YouTube video recommendation system , 2010, RecSys '10.

[67]  Joseph F. McCarthy,et al.  MUSICFX: an arbiter of group preferences for computer supported collaborative workouts , 2000, CSCW '00.

[68]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[69]  Panagiotis Symeonidis,et al.  MoviExplain: a recommender system with explanations , 2009, RecSys '09.

[70]  John Riedl,et al.  Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit , 2011, RecSys '11.

[71]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[72]  Pearl Pu,et al.  CoFeel: Using Emotions for Social Interaction in Group Recommender Systems , 2012 .

[73]  John Riedl,et al.  When recommenders fail: predicting recommender failure for algorithm selection and combination , 2012, RecSys.

[74]  Fan Yang,et al.  A scalable P2P recommender system based on distributed collaborative filtering , 2004, Expert Syst. Appl..

[75]  Yongdong Zhang,et al.  Web video recommendation and long tail discovering , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[76]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[77]  Fabrício Olivetti de França,et al.  Applying Biclustering to Perform Collaborative Filtering , 2007, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007).

[78]  Volker Markl,et al.  Scalable similarity-based neighborhood methods with MapReduce , 2012, RecSys.

[79]  Chris Develder,et al.  OMUS: an optimized multimedia service for the home environment , 2012, Multimedia Tools and Applications.

[80]  Badrish Chandramouli,et al.  StreamRec: a real-time recommender system , 2011, SIGMOD '11.

[81]  Fatih Aksel,et al.  An Adaptive Hybrid Recommender System that Learns Domain Dynamics , 2010 .

[82]  John Riedl,et al.  Is seeing believing?: how recommender system interfaces affect users' opinions , 2003, CHI '03.

[83]  Fan Yang,et al.  DCFLA: A distributed collaborative-filtering neighbor-locating algorithm , 2007, Inf. Sci..

[84]  Jae Won Kim,et al.  An adaptive hybrid movie recommender based on semantic data , 2013, OAIR.

[85]  Iván Cantador,et al.  Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols , 2013, User Modeling and User-Adapted Interaction.

[86]  Nuria Oliver,et al.  Data Mining Methods for Recommender Systems , 2015, Recommender Systems Handbook.

[87]  Aristides Gionis,et al.  Machine learned job recommendation , 2011, RecSys '11.

[88]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[89]  Fardin Ahmadizar,et al.  A new ant colony algorithm for makespan minimization in permutation flow shops , 2012, Comput. Ind. Eng..

[90]  Yehuda Koren,et al.  The BellKor solution to the Netflix Prize , 2007 .

[91]  Qiang Yang,et al.  Transfer Learning in Collaborative Filtering for Sparsity Reduction , 2010, AAAI.

[92]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[93]  Lars Schmidt-Thieme,et al.  Online-updating regularized kernel matrix factorization models for large-scale recommender systems , 2008, RecSys '08.

[94]  Nava Tintarev,et al.  Rate it again: increasing recommendation accuracy by user re-rating , 2009, RecSys '09.

[95]  John Riedl,et al.  Meta-recommendation systems: user-controlled integration of diverse recommendations , 2002, CIKM '02.

[96]  Gerhard Wellein,et al.  Introduction to High Performance Computing for Scientists and Engineers , 2010, Chapman and Hall / CRC computational science series.

[97]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[98]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[99]  Bart P. Knijnenburg,et al.  Explaining the user experience of recommender systems , 2012, User Modeling and User-Adapted Interaction.

[100]  Martha Larson,et al.  Recommender Systems Evaluation: A 3D Benchmark , 2012, RUE@RecSys.

[101]  Yin-Feng Xu,et al.  Approximation algorithms for parallel machine scheduling with linear deterioration , 2013, Theor. Comput. Sci..

[102]  Richard S. Zemel,et al.  Collaborative prediction and ranking with non-random missing data , 2009, RecSys '09.

[103]  Judith Masthoff,et al.  Designing and Evaluating Explanations for Recommender Systems , 2011, Recommender Systems Handbook.

[104]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[105]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[106]  Jöran Beel,et al.  Scienstein : A Research Paper Recommender System , 2009 .

[107]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[108]  Anthony Jameson,et al.  More than the sum of its members: challenges for group recommender systems , 2004, AVI.

[109]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[110]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[111]  Geoffrey J. McLachlan,et al.  A Very Fast Algorithm for Matrix Factorization , 2010, ArXiv.

[112]  Umar Qasim,et al.  A partial-order based active cache for recommender systems , 2009, RecSys '09.

[113]  Zhi-Dan Zhao,et al.  User-Based Collaborative-Filtering Recommendation Algorithms on Hadoop , 2010, 2010 Third International Conference on Knowledge Discovery and Data Mining.

[114]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[115]  Xingshe Zhou,et al.  TV3P: an adaptive assistant for personalized TV , 2004, IEEE Transactions on Consumer Electronics.

[116]  Raymond J. Mooney,et al.  Explaining Recommendations: Satisfaction vs. Promotion , 2005 .

[117]  Karuna Jain,et al.  An Annealed Genetic Algorithm for Multi Mode Resource Constrained Project Scheduling Problem , 2012 .

[118]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[119]  Barry Smyth,et al.  PeerChooser: visual interactive recommendation , 2008, CHI.

[120]  Toon De Pessemier,et al.  Time dependency of data quality for collaborative filtering algorithms , 2010, RecSys '10.

[121]  Chris Cornelis,et al.  A Fuzzy Relational Approach to Event Recommendation , 2005, IICAI.

[122]  Federica Cena,et al.  The impact of rating scales on user's rating behavior , 2011, UMAP'11.

[123]  Qiang Yang,et al.  Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction , 2009, IJCAI.

[124]  Robert Wetzker,et al.  A hybrid PLSA approach for warmer cold start in folksonomy recommendation , 2009 .

[125]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[126]  Bamshad Mobasher,et al.  Intelligent Techniques for Web Personalization , 2005, Lecture Notes in Computer Science.

[127]  Huan Liu,et al.  Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose , 2013, ICWSM.

[128]  Ralf Lämmel,et al.  Google's MapReduce programming model - Revisited , 2007, Sci. Comput. Program..

[129]  Guy Shani,et al.  Tutorial on evaluating recommender systems , 2010, RecSys '10.

[130]  Alejandro Bellogín,et al.  Precision-oriented evaluation of recommender systems: an algorithmic comparison , 2011, RecSys '11.

[131]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[132]  George Karypis,et al.  Feature-based recommendation system , 2005, CIKM '05.

[133]  Benjamin Kille,et al.  Modeling Difficulty in Recommender Systems , 2012, RUE@RecSys.

[134]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .