Multivariate Stein Factors for a Class of Strongly Log-concave Distributions

We establish uniform bounds on the low-order derivatives of Stein equation solutions for a broad class of multivariate, strongly log-concave target distributions. These "Stein factor" bounds deliver control over Wasserstein and related smooth function distances and are well-suited to analyzing the computable Stein discrepancy measures of Gorham and Mackey. Our arguments of proof are probabilistic and feature the synchronous coupling of multiple overdamped Langevin diffusions.

[1]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[2]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[3]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[4]  A. Barbour Stein's method and poisson process convergence , 1988, Journal of Applied Probability.

[5]  A. Barbour Stein's method for diffusion approximations , 1990 .

[6]  F. Götze On the Rate of Convergence in the Multivariate CLT , 1991 .

[7]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[8]  V. Bentkus On the dependence of the Berry–Esseen bound on dimension , 2003 .

[9]  Martin Raič,et al.  Normal Approximation by Stein ’ s Method , 2003 .

[10]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[11]  S. Chatterjee,et al.  MULTIVARIATE NORMAL APPROXIMATION USING EXCHANGEABLE PAIRS , 2007, math/0701464.

[12]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[13]  Anthony R'eveillac,et al.  Multivariate normal approximation using Stein's method and Malliavin calculus , 2008, 0804.1889.

[14]  Q. Shao,et al.  Stein's Method of Exchangeable Pairs with Application to the Curie-Weiss Model , 2009, 0907.4450.

[15]  G. Reinert,et al.  Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition , 2007, 0711.1082.

[16]  Elizabeth S. Meckes,et al.  On Stein's method for multivariate normal approximation , 2009, 0902.0333.

[17]  M. Cule,et al.  Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density , 2009, 0908.4400.

[18]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[19]  S. Glotzer,et al.  Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.

[20]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[21]  Ivan Nourdin,et al.  Stein’s method, logarithmic Sobolev and transport inequalities , 2014, Geometric and Functional Analysis.

[22]  P. Cattiaux,et al.  Semi Log-Concave Markov Diffusions , 2013, 1303.6884.

[23]  Rina Foygel,et al.  Corrupted Sensing: Novel Guarantees for Separating Structured Signals , 2013, IEEE Transactions on Information Theory.

[24]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[25]  L. Decreusefond The Stein-Dirichlet-Malliavin method , 2015, 1505.06075.

[26]  Lester W. Mackey,et al.  Measuring Sample Quality with Stein's Method , 2015, NIPS.

[27]  Lester W. Mackey,et al.  Measuring Sample Quality with Diffusions , 2016, The Annals of Applied Probability.

[28]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .